

C & H Hog Farms Inc

Individual NPDES Permit Application

Section 26, T-15-N, R-20-W

Newton County, Arkansas

April 11, 2018

Prepared for:

Jason Henson

HC 72 Box 2

Vendor, AR 72683

Prepared by:

DeHaan, Grabs & Associates, LLC

4200 21st St. SE #101

Mandan, ND 58554

Table of Contents

ADEQ Application Section A:

- 1.
- NPDES Permit Application Form 1 EPA Form 2B (See NPDES Notice of Intent Application) 2.
- 3. Arkansas Department of Environmental Quality Disclosure Statement

Section B: Nutrient Management Plan

Appendix

- 1. Facility Location Map
- 2. Manure System Flow Diagram
- 3. FEMA reference Map

Section A

Arkansas Department of Environmental Quality NPDES PERMIT APPLICATION FORM 1

INSTRUCTIONS:

- 1. This form should be <u>typed or printed in ink</u>. If insufficient space is available to address any item, please continue on an attached sheet of paper.
- 2. Please complete the following section(s). If a section is not required, please check the Not Applicable (N/A) box at the top of the section.

Sections	A	В	C	D	E	F	G	H	I
POTW	X	X	X	X					X
Industrial User	X	X	X	X	X	X	X		X
Construction Permit Only	X	X	*	X	X			X	X
Modification	X	X	X	X		*	*	X	X
All Other Applicants	X	X	X	X	X				X

^{*} As necessary

3. If you need help on SIC or NAICS go to www.osha.gov/oshstats/sicser.html.

Common SIC and NAICS

Facility Type	SIC Code	NAICS
Publicly Owned Treatment	4952	221320
Works (POTW)		
Subdivision, Apartment Complex	6552	237210
Mobile Home Park	6515	533190

4. If you have any questions about this form you may call NPDES Section at 501-682-0623 or go to www.adeq.state.ar.us/water. You may also contact:

Department

Information in Regard to

Telephone #

Arkansas Department of Health

Water Supply

501-661-2623

- 5. The following EPA Forms in addition to Form 1 is required for processing your application:
 - Form 2A Municipal Dischargers
 - Form 2B Concentrated Animal Feeding Operations
 - Form 2C Existing Manufacturing, Commercial, Mining, and Silvicultural Operations
 - Form 2D New Sources and New Dischargers Application for Permit to Discharge Process Wastewater
 - Form 2E Facilities Which Do Not Discharge Process Wastewater (i.e. Domestic, Non contact cooling water)
 - Form 2F Application for Permit to Discharge Storm Water Discharges Associated With Industrial Activity
- 6. Where to Submit

Return the completed form by mail to:

Arkansas Department of Environmental Quality Permits Branch, Office of Water Quality 5301 Northshore Drive North Little Rock, AR 72118

Or by email to:

Water.Permit.Application@adeq.state.ar.us

NPDES PERMIT APPLICATION FORM 1

ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY
OFFICE OF WATER QUALITY
5301 Northshore Drive
North Little Rock, AR 72118-5317
www.adeq.state.ar.us/water

PU	TRPOSE OF THIS APPLICATION
	INITIAL PERMIT APPLICATION FOR NEW FACILITY
\boxtimes	INITIAL PERMIT APPLICATION FOR <u>EXISTING</u> FACILITY
닏	MODIFICATION OF EXISTING PERMIT
Ц	REISSUANCE (RENEWAL) OF EXISTING PERMIT
닐	MODIFICATION AND CONSTRUCTION OF EXISTING PERMIT
	CONSTRUCTION PERMIT
SE	CTION A- GENERAL INFORMATION
1.	Legal Applicant Name (The permit will be issued under this name. This is the entity that controls and is responsible for operations and compliance.):
	C & H Hog Farms, Inc.
	Note: The legal name of the applicant must be identical to the name listed with the Arkansas Secretary of State.
2	Operator Type: Private State Federal Partnership Corporation Other
	State of Incorporation: Arkansas
3.	Facility Name: C & H Hog Farms, Inc.
4.	Is the legal applicant identified in number 1 above, the owner of the facility?
5.	NPDES Permit Number (If Applicable): AR00
6.	NPDES General Permit Number (If Applicable): <u>ARG590001</u>
7.	NPDES General Storm Water Permit Number (If Applicable):
8.	Permit Numbers and/or names of any permits issued by ADEQ or EPA for an activity located in Arkansas that is presently held by the applicant or its parent or subsidiary corporation which are not listed above:
	Permit Name Permit Number Held by
9.	Give driving directions to the wastewater treatment plant with respect to known landmarks:
	The location for this facility is approximately 1.6 mi west of Mt. Judea, AR in Newton County. Driving directions from Mt.
	Judea are approximately 0.8 mi southwest on County Rd 54 and right on County Rd 41 for approximately 0.75 mi. The site is
	located on the left hand side of the road.
10.	Facility Physical Location: (Attach a map with location marked; street, route no. or other specific identifier)
	Street: HC 72 Box 2
	110 , # 200 #

	City: Vendor County: Newton State: Arkans	sas Zip: <u>72683</u>
11.	11. Facility Mailing Address for permit, DMR, and invoice (Street or Post Office Box):	,
	Name: C & H Hog Farms, Inc. Title:	
	Street: HC 72 Box 2 P.O. Box	
	City: Vendor State: AR	Zip: _72683
	E-mail address*: chhogfarmsinc@outlook.com Fax:	
	* Is emailing all documents (permit, letters, DMRs, invoices, etc.) acceptable to the applicant?	☑ Yes ☐ No
12.	12. Neighboring States Within 20 Miles of the permitted facility (Check all that apply):	
	Oklahoma [Missouri [Tennessee [Louisiana [Texas [Mis	ssissippi 🗌
13.	13. Indicate applicable Standard Industrial Classification (SIC) Codes and NAICS codes for primary prinstructions for assistance in determining the correct SIC and NAICS Codes):	processes (See Item #3 of the
•	0213 SIC Facility Activity under this SIC or NAICS:	
14.	14. Design Flow: MGD Highest Monthly Average of the last two years Flow: M	IGD
15.	15. Is the outfall equipped with a diffuser? Yes No	
16.	16. Responsible Official (as described on the last page of this application):	
	Name: Jason Henson Title:	President
	Address: HC 72 Box 2 Phone Number:	870-434-5004
	E-mail Address: <u>chhogfarmsinc@outlook.com</u>	
	City: Vendor State: AR Zip:	72683
17.	17. Cognizant Official (Duly Authorized Representative of responsible official as described on the las	t page of this application):
	Name: _Philip Campbell Title:	Secretary
	Address: HC 72 Box 2 Phone Number:	870-434-5004
	E-mail Address: chhogfarmsinc@outlook.com	
	City: Vendor State: AR Zip:	72683
18.	18. Name, address and telephone number of active consulting engineer firm (If none, so state):	
	Contact Name: Nathan Pesta	
	Company Name: DeHaan, Grabs & Associates, LLC	
	Address: 4200 21st St. SE Unit 101 Phone Number	: 701-663-1116
	E-mail Address: nate@dgaengineering.com	
	City: Mandan State: ND Zip	: 58554
19.	19. Wastewater Operator Information	
	Wastewater Operator Name: License number:	,
	Class of municipal wastewater operator: I I II II II IV	

Class of industrial wastewater operator: Basic	ic Advanced	Ш
--	-------------	---

SECTION B: FACILITY AND OUTFALL INFORMATION

	°	55 '	13.60	" Long	:93	° 4.0	'_51.00	" County: Newton	Nearest Town:	Mt. Judea
2.	Outfall Loc	ation (The lo	cation of the	end of the	e pipe discl	harge point):		,	
	Outfall No.	<u>N/A</u> :								
La	titude:	o	,	,,	Longitu	de:		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
De	escription of o	outfall location	on:							
Na N/		ving Stream ((i.e. an unnaı	ned tribut	ary of Mill	Creek, the	nce into Mill (Creek; thence into Arkans	as River):	
	Α									
	Outfall No.	:								
La	titude:	0	,	"	Longitu	de:	0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	scription of									
3.	Monitoring	Location (If	the monitori	ing is cond	lucted at a	location di	ferent than the	e above Outfall location)	:	
3.	Monitoring Outfall No.		the monitori	ing is cond	lucted at a	location di	ferent than the	e above Outfall location)	:	
		:					ferent than the		:	
La	Outfall No.	: _ °:							:	
La	Outfall No. t: Outfall No.	: _ °:				°-			:	
La	Outfall No. t: Outfall No.	: :			Long:	°-			:	
La	Outfall No. t: Outfall No. t: Outfall No.	: - °: - °:	_ '		Long:	° -			:	
La La	Outfall No. t: Outfall No. t: Outfall No. t:	: -			Long:	° -				

5. FLOW AND SAMPLE MEASUREMENT

How are effluent samples collected?			
How is flow measured, i.e., v-notch weir, totalizi	ing meter, Parshall flume, etc.?		
6. Is the proposed or existing facility located at	bove the 100-year flood level?	Yes	□ No
<u>NOTE</u> : FEMA Map must be in study has been completed at this time.)	ncluded with this application. Map	os can be ordered a	at <u>www.fema.gov</u> . (No Fema
If "No", what measures are (or will be)	used to protect the facility?		
7. Population for Municipal and Domestic Sew	ver Systems:		
8. Backup Power Generation for Treatment Pla	ants		
Are there any permanent backup generators	s? Yes No		
If Yes, how many?	Total Horsepower (hp)?	·	•
If no, please explain. Include a description permit limits once power is restored.	of how the WWTP will be restarte	ed and actions take	on to ensure compliance with

SECTION C – WASTE STORAGE AND DISPOSAL INFORMATION

1.	Studge Disposal Method (Check as many as are applicable):
	Landfill
	Landfill Site Name ADEQ Solid Waste Permit No
\boxtimes	Land Application: ADEQ State Permit No. <u>ARG590001</u>
	Septic tank Arkansas Department of Health Permit No.:
	Distribution and Marketing: Facility receiving sludge:
	Name: Address:
	City: State: Zip: Phone:
	Rail: Other:
	Subsurface Disposal (Lagoon for which the sole purpose is storing sludge):
	Location of lagoon How old is the lagoon?
	Surface area of lagoon: Acre Depth: ft Does lagoon have a liner? Yes No
	Incineration: Location of incinerator
	Remains in Treatment Lagoon(s): N/A
	How old is the lagoon(s)? Has sludge depth been measured? Yes No
	If Yes, Date measured? Sludge Depth? ft If No, When will it be measured?
	Has sludge ever been removed? Yes No If Yes, When was it removed?
	Other (Provide complete description):

SECTION D - WATER SUPPLY

Distance from Discharge point: Within 5 miles

	ources which are downstream of the outfall location, i.e., those which could be affected by the discharge from this facility as many as are applicable):
\boxtimes	Private Well - Distance from Discharge point: Within 5 miles Within 50 miles
	Municipal Water Utility (Specify City):
	Distance from Discharge point: Within 5 miles Within 50 miles
	Surface Water- Name of Surface Water Source:
	Distance from Discharge point: Within 5 miles Within 50 miles
	Lat: °
	Other (Specify):

☐ Within 50 miles

NOT APPLICABLE	(N/A):	
----------------	------	----	--

SECTION E: TRUST FUND REQUIREMENTS AND DISCLOSURE STATEMENT

- 1. Ark. Code Ann. § 8-4-203(b)(1)(A) forbids the Arkansas Department of Environmental Quality from issuing, modifying, renewing, or transferring a permit for a nonmunicipal domestic sewage treatment works without the applicant first fulfilling the trust fund requirements set forth in that section. Ark. Code Ann. § 8-4-203(b)(1)(B) defines "nonmunicipal domestic sewage treatment works" as a device or system operated by an entity other than a city, town, or county that treats, in whole or in part, waste or wastewater from humans or household operations and must continually operate to protect human health and the environment despite a permittee's failure to maintain or operate the device or system. NDSTW's can include, but are not limited to:
 - Sewer Improvement Districts;
 - Subdivisions,
 - Mobile Home Parks,
 - Property Owner' Associates,
 - RV parks, and
 - Apartments

Exclusions Excluded from this application's Section E.1. requirements for trust fund contribution fees are:

- State or federal facilities,
- Schools,
- Universities and colleges,
- Entities that continuously operate due to a connection with a city, town, or county, and
- Commercial or industrial entity that treats domestic sewage from its operations and does not accept domestic sewage from other entities or residences.

The trust fund form may be obtained from the ADEQ web site at:

https://www.adeq.state.ar.us/water/permits/npdes/individual/pdfs/ndstw-trust-fund-certification-form.pdf

2. Disclosure Statement:

Ark. Code Ann. 8-1-106 requires that applicants for any type of permit or transfer of any permit, license, certification or operational authority issued by the Arkansas Department of Environmental Quality (ADEQ) file a Disclosure Statement with their application unless exempt for doing so under Ark. Code Ann. §8-1-106(b)(2). The filing of a Disclosure Statement is mandatory. No application can be considered administratively complete without a completed Disclosure Statement unless that facility is exempt. Publicly traded companies may submit the most recent 10k and 10Q filings to the Securities and Exchange Commission in lieu of the Disclosure Statement. The form may be obtained from the ADEQ web site at:

https://www.adeq.state.ar.us/ADEQ Disclosure Statement.pdf

Page 10 Revised February 2018

SECTION F - INDUSTRIAL ACTIVITY

1.	Does an effluent guideline li Section 304 of the Clean Wa	mitation promulgated ter Act (CWA) apply	by EPA (<u>Link to a Listing</u> to your facility?	of the 40 CFR Effluent Lin	nit Guidelines) under	
	YES [(Answer quest	tions 2 and 3)	NO 🗆			
2.	What Part of 40 CFR?	_				
3.	What Subpart(s)?	. <u> </u>				
4.	Give a brief description of al necessary):	l operations at this fa	cility including primary pro	oducts or services (attach ad	ditional sheets if	
5.	Production: (projected for ne	avy facilities)				
٥.	Froduction. (projected for ne	· · · · · · · · · · · · · · · · · · ·				
		Last	12 Months	Highest Production	Year of Last 5 Years	
	Product(s) Manufactured	II	bs/day*	lbs/day*		
	(Brand name)	Highest Month	Days of Operation	Monthly Average	Days of Operation	

^{*} These units could be off-lbs, lbs quenched, lbs cleaned/etched/rinsed, lbs poured, lbs extruded, etc.

SECTION G - WASTEWATER DISCHARGE INFORMATION

Facilities that checked '	"Ves" in questic	n 1 of Section	F are considered	Categorical Industrial	Users and should skip to	question 2
i acmics mai checked	i co in questic	II I OI SCCHOIL	i aic considered	Calceonical muusinai	USEIS AND SHOULD SKID IS	i uucsuon 2.

For Non-Categorical Users Only: List average wastewater discharge, maximum discharge, and type of discharge (batch,
continuous, or both), for each plant process. Include the reference number from the process flow schematic (reference Figure 1)
that corresponds to each process. [New facilities should provide estimates for each discharge.]

No.	Process Description	Average (GPD		Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)
	antah disaharan angura ay wi	Il come indicate. Di	C:1!4:		
11 6	oatch discharge occurs or wi	n occur, maicate: [N	ew raciiii	ies may estimate.j	
	mber of batch discharges:	-		ge discharge per batch:	(GPD)

Answer questions 2, 3, 4, and 5 only if you are subject to Categorical Standards.

Flow rate: _____ gallons/minute

2. For Categorical Users: Provide the wastewater discharge flows for each of your processes or proposed processes. Include the reference number from the process flow schematic (reference Figure 1) that corresponds to each process. [Note: 1) New facilities should provide estimates for each discharge and 2) Facilities should denote whether the flow was measured or estimated.]

Percent of total discharge: ___

No.	Regulated Process	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)
				

No.	Unregulated Process	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)

	No.	(e.g., Cooling Water)	(GPD)	(GPD)	(batch, continuous, none)	
	If ba	atch discharge occurs or will occur	, indicate: [New facilit	ies may estimate.]		
	Nun	nber of batch discharges: p	per day Averaş	ge discharge per batch:	(GPD)	
	Tim	e of batch discharges(days	at of week)	(hours of day)		
	Flov	v rate: gallons/minute	Percent of total	discharge:		
3.	Do you l	nave, or plan to have, automatic sa	mpling equipment or c	ontinuous wastewater flo	ow metering equipment at this facility	?
	Current:	Flow Metering Yes	es Type: Yes Type:	No	□ N/A □ N/A □	
	Planned:	Flow Metering Yes	es Type: Yes Type:	No	□ N/A □ N/A □	
If y	es, please	indicate the present or future local	tion of this equipment	on the sewer schematic a	and describe the equipment below:	
					· · · · · · · · · · · · · · · · · · ·	
4.	Are any	process changes or expansions pla	nned during the next th	nree years that could alter	r wastewater volumes or characteristic	os?
		Yes No	(If no, skip Que	stion 5)		
5.	Briefly d	escribe these changes and their eff	ects on the wastewater	r volume and characterist	ies:	
				-		
			.			

Average Flow

Maximum Flow

Type of Discharge

Dilution

SECTION H -TECHNICAL INFORMATION

Technical information to support this application shall be furnished in appropriate detail to understand the project. Information in this Part is required for obtaining a **construction permit** or for **modification** of the treatment system.

1.	Describe the treatment system. control efficiency.	Include the types of control equipment to be installed along with their methods of operation and

- 2. One set of construction plans and specifications, approved (Signed and stamped) by a **Professional Engineer** (PE) registered in **Arkansas**, must be submitted as follows:
 - a. The plans must show flow rates in addition to pertinent dimensions so that detention times, overflow rates, and loadings per acre, etc. can be calculated.
 - b. Specifications and complete design calculations.
 - c. All treated wastewater discharges should have a flow measuring device such as a weir or Parshall flume installed. Where there is a significant difference between the flow rates of the raw and treated wastewater, a flow measuring device should be provided both before and after treatment.
- 3. If this application includes a construction permit disturbing five or more acres, a storm water construction permit must be obtained by submitting a notice of intent (NOI) to ADEQ.

SECTION I: SIGNATORY REQUIREMENTS

Cognizant Official (Duly Authorized Representative)

40 CFR 122.22(b) states that all reports required by the permit, or other information requested by the Director, shall be signed by the applicant (or person authorized by the applicant) or by a duly authorized representative of that person. A person is a duly authorized representative only if:

(1) the authorization is made in writing by the applicant (or person authorized by the applicant);

(2) the authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity responsibility, or an individual or position having overall responsibility for environmental matters for the company.

The applicant hereby designates the following person as a Cognizant Official, or duly authorized representative, for signing reports, etc., including Discharge Monitoring Reports (DMR) required by the permit, and other information requested by the Director:

mending Discharge Monitoring Reports	(DNIK) required by the permi	i, and other miormation requested by	the Director:
Signature of Cognizant Official:	Phelip Campb	Date:	4/5/18
Printed name of Cognizant Official:	Philip Campbell		
Official title of Cognizant Official:	Secretary	Telephone Number	870-434-5004
Responsible Official			
The information contained in this form rapplications" (40 CFR 122.22).	nust be certified by a responsi	ble official as defined in the "signate	ory requirements for permit
Responsible official is defined as follows	5 :		
Corporation, a principal officer of at lea Partnership, a general partner Sole proprietorship: the proprietor Municipal, state, federal, or other publications	-	e officer, or ranking elected official.	
JH (Initial) "I certify that the cognizerovisions of 40 CFR 122.22(b)." NOT the applicant to be the responsible office Department. JH (Initial) "I certify that, if this fact full name of the corporation if different to	E: If no duly authorized repre- cial for the facility and only dility is a corporation, it is regis	sentative is designated in this section reports, etc., signed by the applica- tered with the Secretary of State in A	n, the Department considers int will be accepted by the
"I certify under penalty of law that this owith a system designed to assure that qua of the person or persons who manage the submitted is, to the best of my knowledge submitting false information including the of law that all analyses reported as less that test method having the lowest detection less that the statement of the s	alified personnel properly gath e system, or those persons dir ge and belief, true, accurate, a ne possibility of fine and imprant an detectable in this application	er and evaluate the information submectly responsible for gathering the indicomplete. I am aware that there a some of for knowing violations. I fi	uitted. Based on my inquiry aformation, the information are significant penalties for urther certify under penalty
Signature of Responsible Official:	Jason Henso	n. Date:	4/5/18
Printed name of Responsible Official:	Jason Henson		
Official title of Responsible Official:	President	Telephone Number	870-434-5004

Disclaimer

This is an updated PDF document that allows you to type your information directly into the form, print it, and save the completed form.

Note: This form can be viewed and saved only using Adobe Acrobat Reader version 7.0 or higher, or if you have the full Adobe Professional version.

Instructions:

- 1. Type in your information
- 2. Save file (if desired)
- 3. Print the completed form
- 4. Sign and date the printed copy
- 5. Mail it to the directed contact.

EPA I.D. NUMBER (copy from Item 1 of Form 1) FORM U.S. ENVIRONMENTAL PROTECTION AGENCY **EPA** APPLICATIONS FOR PERMIT TO DISCHARGE WASTEWATER
CONCENTRATED ANIMAL FEEDING OPERATIONS AND AQUATIC ANIMAL PRODUCTION FACILITIES 2B**NPDES** I. GENERAL INFORMATION Applying for: Individual Permit E Coverage Under General Permit □ C. FACILITY OPERATION A. TYPE OF BUSINESS B. CONTACT INFORMATION STATUS Owner/or ☑ 1. Concentrated Animal Feeding ■ 1. Existing Facility Operator Name: C & H Hog Farms, Inc. Operation (complete items B, C, D, and section II) Telephone: (870) 434-5004 ☐ 2. Proposed Facility Address: HC 72 Box 2 ☐ 2. Concentrated Aquatic Animal Production Facility (complete items Facsimile: () B, C, and section III) City: Vendor State: AR Zip Code: 72683 D. FACILITY INFORMATION Name: C & H Hog Farms, Inc. Telephone: (870) 434-5004 Address: HC 72 Box 2 ___Facsimile: (____ City: Vendor State: AR __Zip Code: 72683 County: Newton __ Latitude: _____ Longitude: If contract operation: Name of Integrator: JBS Pork Address of Integrator: 1770 Promontory Circle, Greeley, CO 80634 II. CONCENTRATED ANIMAL FEEDING OPERATION CHARACTERISTICS B. MANURE, LITTER, AND/OR WASTEWATER A. TYPE AND NUMBER OF ANIMALS PRODUCTION AND USE 2. ANIMALS 1. How much manure, litter, and wastewater is generated annually by the facility? _____tons 2,090,181 gallons NO. IN OPEN NO. HOUSED 1. TYPE CONFINEMENT UNDER ROOF 2. If land applied how many acres of land under the control of the applicant are available for applying the CAFOs ☐ Mature Dairy Cows manure/litter/wastewater? ☐ Dairy Heifers 3. How many tons of manure or litter, or gallons of wastewater produced by the CAFO will be transferred annually □ Veal Calves to other persons? _____tons $\frac{0 \text{ to 2,090,181}}{20 \text{ to 2,090,181}}$ gallons ☐ Cattle (not dairy or veal calves) Swine (55 lbs. or over) 2,503 **⊠** Swine (under 55 lbs.) 4,000 □ Horses ☐ Sheep or Lambs □ Turkeys ☐ Chickens (Broilers) ☐ Chickens (Layers) □ Ducks ☐ Other: Specify 3. TOTAL ANIMALS 6,503

C. 🗷 TOPOGRAPHIC MAP					-
D. TYPE OF CONTAINMENT, STORAGE AN	D CAPACITY				
1. Type of Containment	Total Capacit	y (in gallons)			
☐ Lagoon					
M Holding Pond	2,352	2,931			
☐ Evaporation Pond					
Other: Specify Shallow Pit-Pull-Plug	759,	542			
2. Report the total number of acres contributing of	drainage: 0 acres			- -	
3. Type of Storage	Total Number of Days	Total Capacity (gallons/tons)			
☐ Anaerobic Lagoon					
☐ Storage Lagoon					
☐ Evaporation Pond					
☐ Aboveground Storage Tanks					
☐ Belowground Storage Tanks				Terrent Control	
☐ Roofed Storage Shed					
☐ Concrete Pad					
☐ Impervious Soil Pad					
□ Other: Specify					
E. NUTRIENT MANAGEMENT PLAN Note: Effective February 27, 2009, a permit ap Permitting Authority. 1. Please indicate whether a nutrient management		·			
2. If no, please explain:		V EV			
3. Is a nutrient management plan being implement	Ĭ	Yes □ No			
4. The date of the last review or revision of the n	utrient management plan.	Date: 04/11/18			
If not land applying, describe alternative use(s	s) of manure, litter, and/or	wastewater:			
F. LAND APPLICATION BEST MANAGEMENT Please check any of the following best many water quality:		being implemented a	the facility to control r	unoff and protect	
■ Buffers ■ Setbacks □ Conservation	tillage Constructed v	vetlands 🗆 Infiltratio	on field 🗵 Grass filter	□ Теггасе	

III. CONCENT	RATED AQUAT	IC ANIMAL PR	ODUCTION FAC	CILITY CHAR	ACTERISTICS			
	all give the maxim long-term average		aximum 30-day	B. Indicate the total number of ponds, raceways, and similar structures in your facility.			similar	
1. Outfall No.	2. F	low (gallons per	day)	1. Ponds	2 Racew	ays	3. Ot	her
	a, Maximum. Daily	b. Maximum 30 Day	c. Long Term Average	C. Provide the used by your fa	name of the receiv ecility.	ing water and	d the so	ource of water
			erander of the second	1. Receiving W	/ater	2. Water Sc	ource	······································
·								
			d fed at your facilities the maximum we			veight produc	ed by	your facility per
		nter Species	**************************************			Water Specie	s	
a. Spe	cies	b. Harvestable W	cight (pounds)	a. S	pecies			ight (pounds)
		(1) Total Yearly	(2) Maximum		•	(1) Total Y	carly	(2) Maximum
E. Report the tot	al pounds of food	during the calcuda	r month of	1. Month		2. Pounds o	of Food	
IV. CERTIFIC.	ATION			 		<u> </u>	***************************************	
attachments and information is tr	that, based on my	mquiry of those in implete. I am awa	examined and am f ndividuals immedic re that there are si	nely responsible	for obtaining the i	nformation, l	believ	e that the
A. Name and Of Jason Henso	ficial Title (<i>print d</i> on, President	or type)		-	B. Telephone (_	870) 43	4-5004	-
C. Signature					D. Date Signed	1/5/18		·
<u> </u>	on Hens	OV			l	11 9/10		

INSTRUCTIONS

GENERAL

This form must be completed by all applicants who check "yes" to Item II-B in Form 1. Not all animal feeding operations or fish farms are required to obtain NPDES permits. Exclusions are based on size and whether or not the facility discharges proposed to discharge. See the description of these exclusions in the CAFO regulations at 40 CFR 122.23.

For aquatic animal production facilities, the size cutoffs are based on whether the species are warm water or cold water, on the production weight per year in harvestable pounds, and on the amount of feeding in pounds of food (for cold water species). Also, facilities which discharge less than 30 days per year, or only during periods of excess runoff (for warm water fish) are not required to have a permit.

Refer to the Form 1 instructions to determine where to file this form.

Item I-A

See the note above to be sure that your facility is a "concentrated animal feeding operation" (CAFO).

Item I-B

Use this space to give owner/operator contact information.

Item I-0

Check "proposed" if your facility is not now in operation or is expanding to meet the definition of a CAFO in accordance with the CAFO regulations at 40 CFR 122.23.

Item I-D

Use this space to give a complete legal description of your facility's location including name, address, and latitude/longitude. Also, if a contract grower, the name and address of the integrator.

Item I

Supply all information in item II if you checked (1) in item I-A.

Item II-A

Give the maximum number of each type of animal in open confinement or housed under roof (either partially or totally) which are held at your facility for a total of 45 days or more in any 12 month period. Provide the total number of animals confined at the facility.

Item II-B

Provide the total amount of manure, litter, and wastewater generated annually by the facility. Identify if manure, litter, and wastewater generated by the facility is to be land applied and the number of acres, under the control of the CAFO operator, suitable for land application. If the answer to question 3 is yes, provide the estimated annual quantity of manure, litter, and wastewater that the applicant plans to transfer off-site.

Item II-C

Check this box if you have submitted a topographic map of the entire operation, including the production area and land under the operational control of the CAFO operator where manure, litter, and/or wastewater are applied with Form 1.

Federal regulations require the certification to be signed as follows:

- A. For corporation, by a principal executive officer of at least the level of vice president.
- B. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or
- C. For a municipality, State, federal, or other public facility, by either a principal executive officer or ranking elected official.

Item II-D

- 1. Provide information on the type of containment and the capacity of the containment structure (s).
- 2. The number of acres that are drained and collected in the containment structure (s).
- 3. Identify the type of storage for the manure, litter, and/or wastewater. Give the capacity of this storage in days.

Item II-l

Provide information concerning the status of submitting a nutrient management plan for the facility to complete the application. In those cases where the nutrient management plan has not been submitted, provide an explanation. If not land applying, describe the alternative uses of the manure, litter, and wastewater (e.g., composting, pelletizing, energy generation, etc.).

Item II-F

Check any of the identified conservation practices that are being implemented at the facility to control runoff and protect water quality.

Item III

Supply all information in Item III if you checked (2) in Item I-A.

Item III-A

Outfalls should be numbered to correspond with the map submitted in Item XI of Form 1. Values given for flow should be representative of your normal operation. The maximum daily flow is the maximum measured flow occurring over a calendar day. The maximum 30-day flow is the average of measured daily flow over the calendar month of highest flow. The long-term average flow is the average of measure daily flows over a calendar year.

Item III-E

Give the total number of discrete ponds or raceways in your facility. Under "other," give a descriptive name of any structure which is not a pond or a raceway but which results in discharge to waters of the United States.

Item III-C

Use names for receiving water and source of water which correspond to the map submitted in Item XI of Form 1.

Item III-D

The names of fish species should be proper, common, or scientific names as given in special Publication No. 6 of the American Fisheries Society. "A List of Common and Scientific Names of Fishes from the United States and Canada." The values given for total weight produced by your facility per year and the maximum weight present at any one time should be representative of your normal operation.

Item III-E

The value given for maximum monthly pounds of food should be representative of your normal operation.

Item IV

The Clean Water Act provides for severe penalties for submitting false information on this application form.

Section 309(C)(2) of the Clean Water Act provides that "Any person who knowingly makes any false statement, representation, or certification in any application...shall upon conviction, be punished by a fine of no more than \$10,000 or by imprisonment for not more than six months, or both."

Paper Reduction Act Notice

The public reporting and recordkeeping burden for this collection of information is estimated to average 9.5 hours per response. The public reporting and recordkeeping burden for development of the nutrient management plan to be submitted with the form is estimated to average 58 hours per response. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed form to this address.

INSTRUCTIONS FOR DISCLOSURE STATEMENT

Arkansas Code Annotated Section 8-1-106 requires that all applicants for the issuance, or transfer of any permit, license, certification or operational authority issued by the Arkansas Department of Environmental Quality (ADEQ) file a disclosure statement with their applications. The filing of a disclosure statement is mandatory. No application can be considered complete without one.

Disclosure statement means a written statement by the applicant that contains:

- The full name and business address of the applicant and all affiliated persons:
- The full name and business address of any legal entity in which the applicant holds a debt or equity interest of at least five percent (5%) or that is a parent company or subsidiary of the applicant, and a description of the ongoing organizational relationships as they may impact operations within the state:
- A description of the experience and credentials of the applicant, including any past or present permits, licenses, certifications, or operational authorizations relating to environmental regulation;
- A listing and explanation of any civil or criminal legal actions by government agencies involving
 environmental protection laws or regulations against the applicant and affiliated persons in the ten (10) years
 immediately preceding the filing of the application, including administrative enforcement actions resulting in
 the imposition of sanctions, permit or license revocations or denials issued by any state or federal authority,
 actions that have resulted in a finding or a settlement of a violation, and actions that are pending;
- A listing of any federal environmental agency and any other environmental agency outside this state that has or has had regulatory responsibility over the applicant; and
- Any other information the Director of the Arkansas Department of Environmental Quality may require that relates to the competency, reliability, or responsibility of the applicant and affiliated persons.

Exemptions:

The following persons or entities are not required to file a disclosure statement:

- Governmental entities, consisting only of subdivisions or agencies of the federal government, agencies of the state government, counties, municipalities, or duly authorized regional solid waste authorities as defined by § 8-6-702. (This exemption shall not extend to improvement districts or any other subdivision of government which is not specifically instituted by an act of the General Assembly.)
- Applicants for a general permit to be issued by the department pursuant to its authority to implement the National Pollutant Discharge Elimination System for storm water discharge.
- If the applicant is a publicly held company required to file periodic reports under the Securities and Exchange Act of 1934 or a wholly owned subsidiary of a publicly held company, the applicant shall not be required to submit a disclosure statement, but shall submit the most recent annual and quarterly reports required by the Securities and Exchange Commission which provide information regarding legal proceedings in which the applicant has been involved. The applicant shall submit such other information as the director may require that relates to the competency, reliability, or responsibility of the applicant and affiliated persons.

Exemptions continued:

The following permits, licenses, certifications, and operational authorizations are also exempt from submitting a disclosure statement:

- Hazardous Waste Treatment, Storage, and Disposal Permit Modifications (Class 1, 2, and 3), as defined in Arkansas Pollution Control and Ecology Commission (APC&EC) Regulation 23;
- Phase 1 Consultants, as defined in APC&EC Regulation 32:
- Certifications for Operators of Commercial Hazardous Waste Facilities, as defined in APC&EC Regulation 23 § 264.16(f);
- Regulated Storage Tank Contractor or Individual License Renewals as defined in APC&EC Regulation 12;
- Certifications for Persons Operating and Maintaining Underground Storage Tank Systems which Contain Regulated Substances, as defined in APC&EC Regulation 12.701, et. seq.;
- Individual Homeowners seeking coverage under General Permit ARG5500000; Wastewater Operator Licenses, as defined in APC&EC Regulation 3;
- Water Permit Modifications for permits issued under the authority of the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. §8-4-101, et. seq.);
- Solid Waste Permit Modifications for permits issued under APC&EC Regulation 22; Solid Waste Landfill
 Operator License Renewals, as defined in Regulation No. 27;
- Air Permit Modifications for permits issued under APC&EC Regulations 18, 19, and 26; and Asbestos Certification Renewals, as defined in Regulation 21.

Deliberate falsification or omission of relevant information from disclosure statements shall be grounds for civil or criminal enforcement action or administrative denial of a permit, license, certification, or operational authorization.

ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY DISCLOSURE STATEMENT

Instructions for the Completion of this Document:
A. Individuals, firms or other legal entities with no changes to an ADEQ Disclosure Statement, complete items 1 through 5 and 18.
B. Individuals who never submitted an ADEQ Disclosure Statement, complete items 1 through 4, 6, 7, and 16 through 18.
C. Firms or other legal entities who never submitted an ADEQ Disclosure Statement, complete 1 through 4, and 6 through 18.
If Not Submitting by ePortal, Mail Original to:
ADEO
DISCLOSURE STATEMENT
[List Proper Division(s)]
5301 Northshore Drive
North Little Rock, AR 72118-5317
1. APPLICANT: (Full Name)
C & H Hog Farms, Inc.
2. MAILING ADDRESS: (Number and Street, P.O.Box Or Rural Route) HC 72 Box 2
3. CITY, STATE, AND ZIPCODE: Vendor, AR 72683
4a. Applicant Type:
Individual Corporate or Other Entity
4b. Reason for Submission:
Permit Liceuse Certification Operational Authority
New Application Modification Renewal Application (If no changes from previous disclosure statement, complete number 5 and 18.)
4c. Programs:
Air Water Hazardous Waste Regulated Storage Tank Mining Solid Waste Used Tire Program
5. <u>Declaration of No Changes:</u> The violation history, experience and credentials, involvement in current or pending environmental lawsuits, civil and criminal, have not changed since the last Disclosure Statement that was filed with ADEQ on

6. Describe the experience and credentials of the Applicant, including the receipt of any past or present permits, licenses, certifications or operational authorization relating to environmental regulation. (Attach additional pages, if necessary.)	
C & H Hog Farms, Inc. currently operates in full compliance with state and federal regulations an holds a Regulation 6 General Permit, ARG590001. The farm has been in operation for approximately five (5) years with no violations or enforcement actions. Prior to that, Richard Campbell and Philip Campbell jointly owned and operated C & C Hog Barn for twelve (12) years. & C Hog Barn held a Regulation 5 Permit, 3540-WR-5.	
7. List and explain all civil or criminal legal actions by government agencies involving environmental protection laws or regulations against the Application to last ton (10) years including:	ant *
Administrative enforcement actions resulting in the imposition of sanctions;	
Permit or license revocations or denials issued by any state or federal authority; Actions that have resulted in a finding or a settlement of a violation; and Pending actions. (Attach additional pages, if necessary.)	
 Permit or license revocations or denials issued by any state or federal authority; Actions that have resulted in a finding or a settlement of a violation; and Pending actions. 	
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as
2. Permit or license revocations or denials issued by any state or federal authority; 3. Actions that have resulted in a finding or a settlement of a violation; and 4. Pending actions. (Attach additional pages, if necessary.) There have been no civil or criminal legal actions by government agencies against C & H Hog Farms, Inc. C & H Hog Farms, Inc. applied for a Regulation 5 permit in April 2016. The permit application was	as

8. List all officers of the Applicant. (add additio	
NAME: Jason Henson	TITLE: President
STREET: HC 72 Box 2	
CTTY, STATE, ZIP: Vendor, AR 72683	
NAME: Richard Campbell	TITLE: Vice-President
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 72683	
1	
NAME: Philip Campbell	TITLE: Secretary
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 72683	
9. List all directors of the Applicant. (Add addit	ional pages, if necessary.)
NAME: Jason Henson	TTTLE: President
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 72683	
NAME: Richard Campbell	TITLE: Vice-President
STREET: HC 72 Box 2	IIILE:
CITY, STATE, ZIP: Vendor, AR 72683	
NAME: Philip Campbell	THILE: Secretary
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 72683	
10. List all partners of the Applicant. (Add add	
NAME: Jason Henson	tional pages, if necessary.)
NAME: Jason Henson STREET: HC 72 Box 2	
NAME: Jason Henson	
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell	TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2	TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell	TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell, STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2	TITLE: President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell	TITLE: President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell, STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2	TITLE: President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in	TITLE: President TITLE: Vice-President TITLE: Secretary n a supervisory capacity or with authority over operations of the facility subject to this application.
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: President TITLE: Vice-President TITLE: Secretary
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: President TITLE: Vice-President TITLE: Secretary n a supervisory capacity or with authority over operations of the facility subject to this application.
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson	TITLE: President TITLE: Vice-President TITLE: Secretary n a supervisory capacity or with authority over operations of the facility subject to this application.
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant is NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: Vice-President TITLE: Secretary a supervisory capacity or with authority over operations of the facility subject to this application. TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant is NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell	TITLE: President TITLE: Vice-President TITLE: Secretary n a supervisory capacity or with authority over operations of the facility subject to this application.
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2	TITLE: Vice-President TITLE: Secretary a supervisory capacity or with authority over operations of the facility subject to this application. TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: Vice-President TITLE: Secretary a supervisory capacity or with authority over operations of the facility subject to this application. TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2	TITLE: Vice-President TITLE: Secretary a supervisory capacity or with authority over operations of the facility subject to this application. TITLE: President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683	TITLE: President TITLE: Vice-President TITLE: Secretary TITLE: President TITLE: Vice-President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell	TITLE: President TITLE: Vice-President TITLE: Secretary TITLE: President TITLE: Vice-President TITLE: Vice-President
NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 11. List all persons employed by the Applicant in NAME: Jason Henson STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Richard Campbell STREET: HC 72 Box 2 CITY, STATE, ZIP: Vendor, AR 72683 NAME: Philip Campbell STREET: HC 72 Box 2	TITLE: President TITLE: Vice-President TITLE: Secretary TITLE: President TITLE: Vice-President TITLE: Vice-President

12. List all persons or legal entities, who	own or control more than five percent (5%) of the Applicant's debt or equity.
NAME: Jason Henson	TTTLE: President
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 7268	3
NAME: Richard Campbell	TITLE: Vice-President
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 7268	· · · · · · · · · · · · · · · · · · ·
NAME: Philip Campbell	TTTLE: Secretary
STREET: HC 72 Box 2	
CITY, STATE, ZIP: Vendor, AR 7268	
13. List all local outities in which the Am	olicant holds a debt or equity interest of more than five percent (5%).
•	TITLE:
	TTTLE:
CITY, STATE, ZIP:	
NAME:	TTTLE:
STREET:	
14. List any parent company of the Appli	cant. Describe the parent company's ongoing organizational relationship with the Applicant.
NAME:	
STREET:	
CITY, STATE, ZIP:	
Organizational Relationship:	
15. List any subsidiary of the Amplicant 1	Describe the subsidiary's ongoing organizational relationship with the Applicant.
NAME:	
STREET:	
CITY, STATE, ZIP:	
	Will Will Will de Control of the Con
Organizational Relationship:	
п	
•	

jurisdiction and who through r	now in compliance or has a history of noncompliance with the environmental law or regulations of this state or any other relationship by blood or marriage or through any other relationship could be reasonably expected to significantly influence the ould adversely affect the environment.
NAME:	TITLE:
STREET:	
•	
	TTTLE:
CITY, STATE, ZIP:	
17. List all federal environmen Applicant.	tal agencies and any other environmental agencies outside this state that have or have had regulatory responsibility over the
,	
,	·

18. VERIFICATION AND ACKNOWLEDGEMENT

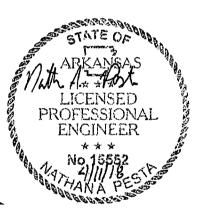
The Applicant agrees to provide any other information the director of the Arkansas Department of Environmental Quality may require at any time to comply with the provisions of the Disclosure Law and any regulations promulgated thereto. The Applicant further agrees to provide the Arkansas Department of Environmental Quality with any changes, modifications, deletions, additions or amendments to any part of this Disclosure Statement as they occur by filing an amended Disclosure Statement.

DELIBERATE FALSIFICATION OR OMISSION OF RELEVANT INFORMATION FROM DISCLOSURE STATEMENTS SHALL BE GROUNDS FOR CIVIL OR CRIMINAL ENFORCEMENT ACTION OR ADMINISTRATIVE DENIAL OF A PERMIT, LICENSE, CERTIFICATION OR OPERATIONAL AUTHORIZATION.

COMPLETE THIS SECTION ONLY IF SUBMITTING OTHER THAN BY EPORTAL:

I, Jason Henson	, certify under penalty of law that this document and			
	or supervision in accordance with a system designed to			
assure that qualified personnel properly gather and	l evaluate the information submitted. Based on my stem, or those persons directly responsible for gathering			
-	e best of my knowledge and belief, true, accurate, and			
complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violation.				
APPLICANT				
SIGNATURE: Jason Henson				
TITLE: President				
DATE: 4/5/18				

Section B



Comprehensive Nutrient Management Plan

For

C&H Hog Farms

Newton County, AR

Prepared by DeHaan, Grabs & Associates, LLC,

April 2018

Nutrient Management Plan Table of Contents

A. Introduction

- 1. Narrative for Nutrient Management Plan
- 2. Signature Page
- 3. Contact Information
- 4. References Page
- 5. Local County Ordinances

B. Nutrient Utilization Plan

C. Land Application Calculations

- 1. Land Application & Manure Calculations
- 2. 3. Yield Goals & Crop Nutrient Uptake
- 3. Phosphorus Index
- D. Phosphorus Based Field list
- E. Inventory of Water Wells

F. Land Treatment Information and Land Application Maps

- 1. Waste Utilization Summary Sheet
- 2. Topographical Site Map
- 3. Conservation Maps
- 4. Soil Survey Maps

G. Signed Manure Application Lease Agreements and Setback Requirement Waiver

- H. Soil Test Reports
- I. Nutrient Tests Results and How to
- J. Mortality Disposal Actions
- K. Livestock Feed Management
- L. Odor Control
- M. Waste Storage Pond Pumping Plan

N. Record Keeping and Land Application Log Forms

- 1. Manure Source Details
- 2. Annual Report Form for Permitted Confined Animal Facilities
- 3. Previous Manure Applications and Nitrogen Credits
- 4. Calculating Residual/Supplemental Nitrogen Amounts
- 5. Fertilizer Recommendations and Crop Requirements
- 6. Determining the Manure Application Rate
- 7. Animal Waste Land Application Record for Permitted Confined Animal Facilities

Section A: Introduction

A graph of the control of the contro

Nutrient Management Plan

The Nutrient Management Plan (NMP) is an important part of the conservation management system (CMS) for your Animal Feeding Operation (AFO). This NMP documents the planning decisions and operation and maintenance for the animal feeding operation. It includes background information and provides guidance, reference information and Web-based sites where up-to-date information can be obtained. Refer to the Producer Activity document for information about day-to-day management activities and recordkeeping. Both this document and the Producer Activity document shall remain in the possession of the producer/landowner.

Farm contact information: C&H Hog Farms,

870-434-5004

HC 72 Box 2

Latitude/Longitude:

35, 55', 13.60" & -93, 4' 51.0"

Vendor, AR 72683

Plan Period:

2018-2023

Animal Type: Swine

Animal Units: 999

Owner/Operator

As the owner/operator of this NMP, I, as the decision maker, have been involved in the planning process and agree that the items/practices listed in each element of the NMP are needed. I understand that I am responsible for keeping all the necessary records associated with the implementation of this NMP. It is my intention to implement/accomplish this NMP in a timely manner as described in the plan.

Signature: Jason Henson	Date: 4-11-18
Name: Jason Henson	1 // 20

Conservation Planner

As a Conservation Planner, I certify that I have reviewed both the Nutrient Management Plan and Producer Nutrient Management Activities documents for technical adequacy and that the elements of the documents are technically compatible, reasonable and can be implemented.

Signature: Math. A. Pesta, P.E. Title: Senior Project Engineer	Date: 4/11/18
Manure and Wastewater Handling and Storage Signature: A. Post	Date: 4/11/18
Signature: //Wh. A. Posh Name: Nathan A. Pesta, P.E. Title: Senior Project Engineer	Date: 4/11/18

Nutrient Management

The Nutrient Management component of this plan meets the AR Nutrient Management 590 Practice Standard.

Signature: NWT A Plat Date: 4/11/18

Name: Nathan A. Pesta P.E. Title: TSP Certified CNMP Planner

Sensitive data as defined in the Privacy Act of 1974 (5 U.S.C. 552a, as amended) is contained in this report, generated from information systems managed by the USDA Natural Resources Conservation Service (NRCS). Handling this data must be in accordance with the permitted routine uses in the NRCS System of Records at http://www.nrcs.usda.gov/about/foia/408_45.html. Additional information may be found at http://www.ocio.usda.gov/qi request/privacy_statement.html.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

NARRATIVE FOR C&H HOG FARMS NUTRIENT MANAGEMENT PLAN

This Nutrient Management Plan was developed for C&H Hog Farms. The farm located approximately 1.6 miles to the west of Mt. Judea AR. Driving directions from Mt. Judea is approximate 0.8 miles southwest on County Rd 54 and right on County rd 41 approximately 0.75 miles. The site is located on the left hand side of the road on a logging trail. The legal location is Section 26, Township 15 North, Range 20 West, Newton County, Arkansas. This Nutrient Management Plan was developed as a joint effort between C&H Hog Farms, the Natural Resources Conservation, and DeHaan, Grabs & Associates, LLC.

The total available for crop uptake of N (18,497 lbs) and available P₂O₅ (14,213 lbs) produced annually by the livestock was determined by DeHaan, Grabs & Associates, LLC using Arkansas Nutrient Management Planner with 2009 PI. The Storage Ponds have capacity of 3,112,473 gallons (this includes the shallow pits). The Storage Ponds have capacity at the Must Pumpdown Elevation of 2,145,227 gallons. The volume between the Freeboard and the Must Pumpdown Elevation is 207,705 gallons. Effluent from Waste Storage Pond 1 and 2 will be applied through a Vac Tanker. The effluent from Waste Storage Pond 2 may also be applied through a traveling gun and a permanent pipeline. The rate will be calculated in accordance to the crop needs using the Nutrient Management Planner with 2009 PI. The NMP includes 670.4 acres of agricultural land, most of which is available for manure application. After excluded acres the land available is approximately 630.7 acres. The typical crops grown are native grass (Bermudagrass and Fescue) either taken off as rotated pasture or hay. When calculating projected land base requirements and RUSLE 2 calculations, predicted crop yield goals was used. When calculating annual nutrient application needs, actual yields on a per field basis will be used.

The record keeping section is important for the proper application of nutrients from the facility. Records of commercial fertilizer will also be maintained. The facility will maintain the following documentation from each application of manure or wastewater: current soil sample analysis, current manure or wastewater analysis, records showing equipment calibration, a Water Quality Risk Assessment (WQRA) map showing actual area application, and a completed Arkansas Nutrient Management Planner summary showing calculated application rate.

NUTRIENT MANANGEMENT PLAN CONTACT INFORMATION

1. Facility:

NAME:

C&H Hog Farms

ADDRESS:

HC 72 Box 2

Vendor, AR 72683

PHONE NUMBER:

(870) 434-5004

EMAIL:

chhogfarmsinc@outlook.com

MANAGER:

Jason Henson

2. Owners:

NAME:

Jason Henson, Philip Campbell and Richard

Campbell

ADDRESS:

HC 72 Box 2

Vendor, AR 72683

PHONE NUMBER:

(870) 434-5004

3. NMP Developed by:

DeHaan, Grabs & Associates, LLC

NAME:

Nathan A. Pesta

ADDRESS:

4200 21st St SE #101 Mandan, ND 58554

11

PHONE NUMBER:

(701) 663-1116

CELL NUMBER:

(701) 400-3950

4. Legal Location of Facility

Middle, Section 26, T-15-N, R-20-W, Newton County, AR

NUTRIENT MANAGEMENT PLAN INFORMATION

Type of Livestock: Swine

Number of head: 6503

Average Weight: 153.6 lbs

Total Number of

^{*}Acres Included in NMP after excluded acres:......630.7 acres

^{*}Note: these include acres for field's five and six which will not be used for land application since the location for field 5 is incorrect and the easement for field 6 is incorrect.

References

The nutrient management plan was developed based on compliance criteria described in the following documents:

Arkansas Pollution August 28th 2015	on Control and Ecology Commission Regulation 6 dated
•	Resources Conservation Service (NRCS) conservation practice <u>magement ("590")</u> dated <u>January 2015</u>
Operations dated/ame	County zoning ordinance for animal feeding

Land Base

The nutrient management plan has sufficient land base to meet land application on a Nitrogen (N)-based for fields 5-9. Fields 1-4 and 10-17 are in addition and will be applied on a Phosphorus (P)-based manure application rate. P-based levels for spreading manure generally requires a significantly greater land base the N-based. When necessary, fields targeted for phosphorus-based manure application are identified in the **Manure Application Planning** section of this plan.

Local Zoning Ordinances

If yes, the producer needs to contact the local county, city or public water supply official to discuss specific requirements.						
4. Is the land application site located in a wellhead protection area? Yes X No						
If yes, show the applicable setbacks on the required field maps and exclude these areas from the total number of acres.						
 Are there specific setback distances that the county or city requires for application of manure? (For example, some local governments require specific setbacks from residences and public right-of-ways.) YesX_ No 						
Application of manure cannot occur until the operator obtains local approval.						
If no, do you intend to get approval or obtain local permits prior to land application of manure? Yes No						
If yes, has the city or town permitted or approved this site? Yes No						
If yes, does the city or town have any special permitting for siting animal feeding operations or application of manure within their jurisdictional area? Yes _X_ No						
 Is the land application area, or any portion, located within the jurisdictional area of a city or town? Yes X_No 						
Application of manure cannot occur until the operator obtains all local approvals.						
If no, do you intend to get approval or obtain local permits prior to land application of manure? Yes No						
If yes, has the county permitted or approved this site? Yes No						
Does the county have any ordinances that require special permitting or approvals for siting animal feeding operations or land application of manure? Yes _X_ No						
The livestock operator is responsible for complying with all local ordinances. The operator shall address all of the following items and ensure any local requirements are met and/or included in this plan.						
Operator Name. Can nog Farms County: Newton						

Section B: Nutrient Utilization Plan

B. NUTRIENT UTILIZATION PLAN

The Following is in this section:

- 1. Location
- 2. Record Keeping
- 3. Soil Sampling
- 4. Manure Sampling
- 5. Nutrient Budget for Land Application
- 6. Timing, Rate, and Frequency of Liquid and Solid Manure Applications
- 7. Land Application of Liquid Manure
- 8. Amounts of Nitrogen Applied
- 9. Solid Accumulation in the Retention Storage Pond
- 10. Check Valves/Safety Switches
- 11. Effluent/Solids Easement Agreement
- 12. Prevention of Destruction of Endangered or Threatened Species
- 13. Setback Requirements
- 14. Typical Crops Grown and Crop Yields for the Land Application Areas
- 15. Nutrient Utilization Plan Amendments

B. NUTRIENT UTILIZATION PLAN

1. Location

This plan is for C& H Hog Farms which is located in Newton County, Arkansas with a legal description of Section 26, Township 15 North, Range 20 West.

2. Record Keeping.

a. A liquid manure pumping data sheet will be completed at the end of all pumping events by the person(s) responsible for monitoring the application event.

The pumping data sheet will include calculations for rate, gallons applied, hours of application time, type of crop applied to, method of application and total acres to be applied.

b. A solids manure application data sheet will be completed at the end of all land application events by the person(s) responsible for monitoring the application event.

The application data sheet will include calculations for rate, cubic feet or tons applied, type of crop applied to, method of application and total acres to be applied.

- c. During Periods of Land Application, daily inspections shall be conducted and record the following
 - 1) Record the days each field is applied to, as well as weather conditions including; temperature, wind speed and wind direction.
 - 2) Inspect and record the condition of the land application fields being used.
 - 3) Inspect and record the condition of all land application equipment being used.
 - 4) Inspect and record the condition of the waste storage pond liner and embankment near the pump intake if pumping is taking place
- d. Inspections after Rainfall events shall be conducted and record the following:
 - 1) Record the depth of the water in all retention ponds.
 - 2) Inspect risers and pipe to ensure they are not plugged or damaged. Clean any significant sediment build up as soon as possible.
 - 3) Inspect storage ponds for signs of leaking or seepage, excessive settling, excessive vegetation growth or damage due to vehicles or equipment, rodents or erosion. Report any leakage as detailed above and make plans to rectify any problems.

- 4) Inspect fences and safety signs around the facility, if applicable, to ensure they are present and in good condition. If necessary repair immediately.
- 5) Record any livestock mortalities and how the carcasses were properly disposed of. (i.e. rendering service receipts, location of burial, etc.)
- f. Annual inspections shall be conducted and record the following.
 - 1) Conduct soil and manure testing as required by this plan.
 - 2) Prepare an annual Nutrient Management Plan based on current data.
 - 3) Annual reporting should be completed as referenced in http://www.adeq.state.ar.us/water/forms inst.htm

3. Soil Sampling.

- a. Composite base-line soil test samples for a new facility or a new land application area and land receiving liquid manure will be taken at least annually.
- b. Soil samples will be taken before the land application of liquid and solids manure to determine the manure application rate appropriate to the land application area.
- c. Samples will be taken as follows:
 - 1) At least 20 cores taken to a depth of 24 inches shall be collected for each field.
 - a) One composite sample shall consist of the top six inches of no fewer than 20 combined. The other sample shall be the remaining six to 24 inches of at least 6-8 combined.
 - b) Phosphorus, copper and zinc shall be tested from the combined top six inches of the cores from a field.
 - c) Nitrate-N and chloride shall be tested from the combined six to 24 inches of the cores from a field.
 - d) The core composite portions of any sample, when mixed together, shall represent the field at the depths from the cores.
 - e) The soil samples shall be taken at least every 40 acres.

- 2) The samples will then be mixed in a plastic bucket (not metal) to form a representative composite sample for the field.
- 3) A subsample will be taken from the mixed composite and placed in the cloth bag provided by the analytical laboratory.
- 4) Soil samples for Nitrate-N and Phosphorus shall be taken no less than annually. The soil samples shall be certified by the person taking the samples as being a representative sample of the soil and of the nutrient values of the field being tested.
- A copy of the certification of each composite soil sample and the laboratory results for each sample shall be maintained in the office of the facility and made available to the Department of Health or designee upon inspection. The certification will show the date the sample was taken, the approximate locations in the field from which the cores were taken, the depth or depths of the cores that constitutes the sample, the name of the person who took the sample and the date the sample delivered to a laboratory.

4. Manure Sampling.

- a. Manure samples in conjunction with soil samples, will be taken prior to land application to determine land application rate.
- b. Liquid and solid manure samples will be analyzed by a certified laboratory for pH, total dissolved salts, potassium, total nitrogen, ammonium-nitrogen and phosphorus.

5. Nutrient Budget for Land Application.

- a. Nutrient loss due to volitization, evaporation, and crop uptake will be accounted for each time liquid manure is applied to the land application area.
- b. In addition, communications with the farmer(s) will ensure proper planning of commercial fertilizer applications with liquid manure applications so that excess nutrients will not be applied to the land.

6. Timing, Rate, and Frequency of Liquid and Solid Manure Applications.

a. Liquid and solid manure will be applied at agronomic rates.

Weather conditions and nutrient holding capacity of the soil will determine the timing and rate of application.

b. Liquid and solid manure will not be applied to land classified as highly erodible according to the conservation compliance provisions of the Federal Food Security Act of 1985, saturated or frozen ground, or during a rainfall event.

Most land applications will be conducted in the spring, summer and fall.

c. Liquid manure will not be applied to land classified as highly erodible according to the conservation compliance provisions of the Federal Food Security Act of 1985, saturated or frozen ground, or during a rainfall event.

Most land applications will be conducted in the spring, summer and fall.

- d. Land application will be conducted in a manner which will prevent a discharge or drainage of manure to ground or surface waters of the State.
- e. Land application practices are managed so as to reduce or minimize ponding or puddling of liquid manure on the site, contamination of ground or surface waters, and occurrence of nuisance conditions such as odors, flies, and rodents.
- f. Land application practices will minimize the possibility of contamination of surface and groundwaters of the State.

7. Land Application of Liquid Manure

- a. Careful scheduling of the land application activities will reduce the threat of odor emissions to residents near the facility.
- b. Days with low humidity are best for land application.
 - Applications on holidays and weekends when people are most likely to be outdoors will be avoided when possible.
- c. The use of sprinkler for land application will be one of the methods for liquid application. The use of a vactanker and equipment to knife inject or spread the nutrients on top the land for land application will be one of the methods for land application.

8. Amounts of Nitrogen Applied.

- a. Liquid manure will typically be applied at agronomic rates for nitrogen, however, the phosphorus application will follow the Arkansas Nutrient Manangement Planner phosphorous index risk assessment to ensure that the phosphorus levels are not becoming a risk to surface water pollution.
- b. Calculations for quantity of liquid manure that can be applied to agronomic rates to crop production land are performed by the staff soil scientist or or land application formulas prepared by University of Arkansas Extension.
- c. Max. application (lbs/ac)/Manure N Content (lbs/ac-in) = Max. manure application (ac-in).
- d. Acres for application x Max. manure application (ac-in) x 27154 = Max. pumping volume (gallons).
- e. The spreadsheet log for land application can be utilized for land application calculations.

9. Solid Accumulation in the Retention Storage Pond.

- a. The design and operation of the waste storage pond at the facility provides for desludging during each waste removal.
- b. If or when pond desludging becomes necessary, Jason Henson- will land apply the solids at agronomic rates and in accordance with local, state, and federal regulations.

c. Solids will be land farmed utilizing available technology at the time of application.

10. Check Valves/Safety Switches

• With the utilization of subsoil land application equipment, the use of check valves/safety switches are not necessary.

11. Effluent/Solids Easement Agreement.

Easements are found in Section G

12. Prevention of Destruction of Endangered or Threatened Species.

- a. Animal manure handling, treatment and management plans are designed with the intention of reducing any harm or destruction of endangered or threatened species or contribute to the taking of any federally endangered or threatened species of plant, fish, or wildlife; nor interfere with or cause harm to migratory birds.
- b. C&H Hog Farms will notify the appropriate fish and wildlife agency in the event of any significant fish, wildlife, or migratory bird/endangered species kill or die-off on or near a retention pond or in the field where waste has been applied and which could reasonably have resulted from waste management at the facility.

13. Setback Requirements.

- a. Manure shall not be applied any closer than a 100 feet to any down-gradient surface waters, open tile line intake structures, sinkholes, agricultural well heads or other conduits to surface waters.
- b. Incorporate surface applications of solid forms of manure or some commercial fertilizer nitrogen formulations (i.e. Urea) into the soil within 24 hours of application.
- c. When applying liquid forms of manure with irrigation equipment select application conditions when there is high humidity, little/no wind blowing, a forth coming rainfall event, and or other conditions that will minimize volatilization losses into the atmosphere. The basis for applying manure under these conditions shall be documented in the nutrient management plans.

14. Typical Crops Grown and Crop Yields for the Land Application Areas:

- a. Pasture 6.5 tons/acre
- b. Hay 6.5 tons/acres

15. Nutrient Utilization Plan Amendments.

- a. This plan may be amended when it fails to provide for protection of environmental resources or as appropriate.
- b. This plan will also need to be amended with Arkansas DEQ approval when one of the following conditions exist:
 - 1) Additional land to which waste will be applies is not described in the approved plans.
 - 2) A procedure will be used that is not described in an approved plan.
 - 3) Land described in an approved plan is no longer available for nutrient application.

Section C: Land Application Calculations

SECTION C. Land Application Calculations

The following Information is attached

- 1. Land Application and Manure Calculations
- 2. Yield Goal & Crop Nutrient Uptake
- 3. Phosphorus Index

Sows Sows Igs iilts	# of Animals # of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425	daily nutrient produc Daily Nutrient Production (lb/day/1,000 lbs)	storage Period	1,000 lb) x storage Total Nutrients	e period (days
Sows Sows Soils	# of Animals # of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425	Daily Nutrient Production	Storage	1,000 lb) x storage	e period (days
Sows Sows Soils	# of Animals # of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425	Daily Nutrient Production	Storage	1,000 lb) x storage	e period (days
Sows Sows Soils	# of Animals # of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425	Daily Nutrient Production	Storage	1,000 lb) x storage	e period (days
Sows Sows Soils	# of Animals # of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425	Daily Nutrient Production	Storage	Total	e period (days
Sows Sows Igs iilts	# of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425 375	Daily Nutrient Production	Storage	Total	e period (days
Sows Sows Igs iilts	# of Animals 400 2100 3 4000 0	Average Weight (lbs.) 425 375	Daily Nutrient Production	Storage	Total	e period (days
Sows igs Silts	400 2100 3 4000 0	Weight (lbs.) 425 375	Nutrient Production			
Sows igs Silts	400 2100 3 4000 0	Weight (lbs.) 425 375	Nutrient Production			
Sows igs Silts	2100 3 4000 0	(lbs.) 425 375	Production	Teriou	Nutrients	
Sows igs Silts	2100 3 4000 0	425 375				
Sows igs Silts	2100 3 4000 0	425 375	(ibruayr 1,000 ibs)	-		-
Sows igs Silts	2100 3 4000 0	375				
Sows igs Silts	2100 3 4000 0	375	0.47	365	29,164	
gs bilts	3 4000 0		0.19	365	54,613	
ilts	4000	450	0.15	365	74	
ilts		10	0.60	365	8,760	
		150	0.42	365	0,0	
	6,503				92,611	
					, ,	
_						
Sows_	400	425	0.15	365	9,308	
Sestation Sows	2100		0.063	365	18,109	-
	3		0.05	365	25	
	4000		0.25	365	3,650	
igs		150	0.16	365	0	
	6,503				31,091	
	+	425	0.3	365	18,615	
Sestation Sows					35,355	
					49	
						1
gs	<u>-</u>	150	0.22	365		
	6,503				59,129	
			· · · · · · · · · · · · · · · · · · ·			
	er = Number of	animala v dailuu			1	
	OFCIAVS	anımais x daliy w	astewater production	(gal./day/pi	g) x daily nutrient p	production (lb.
.,500 841./ 110	. or days.	animais x daily w	astewater production	(gal./day/pig	g) x daily nutrient p	production (lb.
.,000 gai./ A 110						production (lb.
-,500 gai, A 110	# of Animals	Daily	Daily	Storage	Total	production (lb.
.,500 gail/ x 110		Daily Wastewater	Daily Nutrient			production (lb.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Daily Wastewater Production	Daily Nutrient Production	Storage	Total	production (lb.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Daily Wastewater	Daily Nutrient	Storage	Total	production (lb.
	# of Animals	Daily Wastewater Production (gal./day/pig)	Daily Nutrient Production (lb/day/1,000 gal)	Storage Period	Total Nutrients	production (lb.
Sows	# of Animals	Daily Wastewater Production (gal./day/pig)	Daily Nutrient Production (lb/day/1,000 gal)	Storage Period	Total Nutrients	production (lb.
	# of Animals	Daily Wastewater Production (gal./day/pig) 0	Daily Nutrient Production (lb/day/1,000 gal)	Storage Period 365 365	Total Nutrients	production (lb.
Sows Sestation Sows	# of Animals 400 2100	Daily Wastewater Production (gal./day/pig)	Daily Nutrient Production (lb/day/1,000 gal) 0	Storage Period 365 365 365 365 365	Total Nutrients	production (lb.
Sows Sestation Sows	# of Animals 400 2100 3 4000 0	Daily Wastewater Production (gal./day/pig) 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0	Storage Period 365 365 365	Total Nutrients	production (lb.
Sows Sestation Sows	# of Animals 400 2100 3 4000	Daily Wastewater Production (gal./day/pig) 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0	Storage Period 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0	production (lb.
Sows Sestation Sows	# of Animals 400 2100 3 4000 0	Daily Wastewater Production (gal./day/pig) 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0	Storage Period 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs	# of Animals 400 2100 3 4000 0	Daily Wastewater Production (gal./day/pig) 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0	Storage Period 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows	# of Animals 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0 0 0	Storage Period 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs	# of Animals 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0 0 0 0 0 0	Storage Period 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows	# of Animals 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0	Storage Period 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows	# of Animals 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows	# of Animals 400 2100 3 4000 6,503 400 2100 3 4000 2100 3 4000 0	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0	Storage Period 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows	# of Animals 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs	# of Animals 400 2100 3 4000 0 6,503 400 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs gs Gestation Sows gs gs	# of Animals 400 2100 3 4000 6,503 400 2100 3 4000 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs	# of Animals 400 2100 3 4000 6,503 400 2100 3 4000 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (Ib/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs gs Sows Gestation Sows Gestation Sows	# of Animals 400 2100 3 4000 6,503 4000 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs gs Sows Gestation Sows Gestation Sows	# of Animals 400 2100 3 4000 6,503 400 2100 3 4000 6,503 4000 3 4000 3 4000 3 4000 4000 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Storage Period 365 365 365 365 365 365 365 365 365 36	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
Sows Gestation Sows gs gs Sows Gestation Sows gs gs Sows Gestation Sows Gestation Sows	# of Animals 400 2100 3 4000 6,503 4000 2100 3 4000 0 6,503	Daily Wastewater Production (gal./day/pig) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily Nutrient Production (lb/day/1,000 gal) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	365 365 365 365 365 365 365 365 365 365	Total Nutrients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	production (lb.
i ii	Sows Gestation Sows igs in wastewater. in the wastewater.	igs 4000 igs 0 6,503 6,503 Sows 400 Gestation Sows 2100 igs 4000 igs 4000 6,503 in wastewater.	igs 4000 10 igs 0 150 6,503 50 Sows 400 425 Gestation Sows 2100 375 igs 4000 10 igs 4000 10 igs 0 150 6,503 6,503	ligs 4000 10 0.25 ligs 0 150 0.16 6,503	ligs 4000 10 0.25 365 ligs 0 150 0.16 365 6,503 Sows 400 425 0.3 365 Gestation Sows 2100 375 0.123 365 igs 4000 10 0.35 365 igs 4000 10 0.35 365 igs 0 150 0.22 365 6,503 6,503	rigs 4000 10 0.25 365 3,650 rigs 0 150 0.16 365 0 6,503 31,091 Sows 400 425 0.3 365 18,615 Gestation Sows 2100 375 0.123 365 35,355 3 450 0.10 365 49 igs 4000 10 0.35 365 5,110 rigs 0 150 0.22 365 0

Salted floor Nutrients Percent of (lbs) Per	Total N \$2,611 bs Total P 31,091 bs Total P Total N \$59,129 bs							
Total N	Total N \$2,611 bs Total P 31,091 bs Total P Total N \$59,129 bs							
Total P 31,031 lbs 59,129 lbs	Total P 31,081 Bs	Total Nutrients						
Total K 59,129 bs	Total K			92,611	lbs			
Convert to Fertilizer Form	Total PACE Tot			31,091	lbs			
Total N	Total N 92.611 bs Total P2OS 71.96 bs		Total K	59,129	lbs			
Total N	Total N 92.611 bs Total P2OS 71.96 bs							
Total P205	Total R/20	Convert to Fert						
Subtract nutrients lost during storage	Subtract nutrients lost during storage Nutrients after storage Issue Nutrients after storage Issue Nutrients after storage Issue Nutrients Nutrients Percent of Available for Land Issue Iss							
Subtract nutrients lost during storage	Subtract nutrients lost during storage			71,198	lbs			
Nutrients after storage losses = Total nutrients produced × fraction retained = Amount for land application	Nutrients after storage losses = Total nutrients produced x faction retained = Amount for land application		Total K2O	71,546	lbs			
Nutrients after storage losses = Total nutrients produced × fraction retained = Amount for land application	Nutrients after storage losses = Total nutrients produced x faction retained = Amount for land application	100	<u> </u>					
Solids (assume 0% of nutrients retained in solids) Item	Solids (assume 0% of nutrients retained in solids) Item	3. Subtract nut	trients lost during storage					
Item	Item		Nutrients after storage loss	es = Total nuti	rients produced >	fraction retained = A	mount for land application	
Item	Item							
Total N	(ibs) Orig. Application (ibs) ibs/fton, from Section 8	Solids (assum	ne 0% of nutrients retained in s	olids)				
Total N	Total N		Item	Nutrients	Percent of	Available for Land	Estimated Manure Test,	
Total P2O5	Total P2O5			(lbs)	Orig.	Application (lbs)	lbs/ton, from Section 8	
Total K2O	Total K2O		Total N	0	0.70	0	0.0	
Liquids (assume 100% of nutrients retained in liquids)(Table 11-5 Ag Waste Managnement Field Handbook, manure stored in pits beneficial blade of the pits blade of the pits beneficial blade of the pits blade of the pits beneficial blade of the pits blade of the	Liquids (assume 100% of nutrients retained in liquids)(Table 11-5 Ag Waste Managnement Field Handbook, manure stored in pits beneath atted floor)		Total P2O5	0	0.80	0	0.0	
Nutrients Nutrients Percent of (lbs) Available for Land Section 8) Sect	Item		Total K2O	0	0.80	0	0.0	
Nutrients Nutrients Percent of (lbs) Available for Land Section 8) Section 8)	Item							
Item	Item	Liquids (assur slatted floor)	me 100% of nutrients retained	in liquids)(Tab	le 11-5 Ag Waste	e Managnement Field	Handbook, manure stored in	pits beneath
Item	Item							
Total N	Total N \$2,611 0.73 67,806 56.8 Total P2O5 71,198 0.85 60,518 50.7				Percent of			,
Total P2O5	Total P205	·		(lbs)	Orig.	Available for Land		
## Total K2O	Total K2O					67,606		
Estimate the amount of nutrients that will be available each year after the third consecutive year of application Plant available nutrients = Amount applied x fraction available Solids (assume 0% of nutrients retained in solids) Item Nutrients (lbx Percent Avail. Available for Land Application (lbs) Total N	Estimate the amount of nutrients that will be available each year after the third consecutive year of application Plant available nutrients = Amount applied x fraction available Olids (assume 0% of nutrients retained in solids) Item Nutrients (lbt Percent Avail. Available for Land Application (lbs) Total N 0 0.73 0 Total P2O5 0 0.990 0 Total K2O 0 0.93 0 Quids (assume 100% of nutrients retained in liquids) (Swine manure stored in covered storage) Item Nutrients (lbs) Application (lbs) Applicat				0.85	60,518	50.7	
Estimate the amount of nutrients that will be available each year after the third consecutive year of application Plant available nutrients = Amount applied x fraction available Solids (assume 0% of nutrients retained in solids) Item Nutrients (lbs Percent Avail. Available for Land Application (lbs) Total N Total P2O5 Total K2O Discreptible Nutrients (lbs) Available for Land Application (lbs) Total K2O Discreptible Nutrients (lbs) Percent Avail. Available for Land Nutrients (lbs) Application (lbs) Application (lbs) Application (lbs) Application (lbs) Total N Foral P2O5 Foral P	Estimate the amount of nutrients that will be available each year after the third consecutive year of application Plant available nutrients = Amount applied x fraction available	n	Total K2O	71,546	0.85	60,814	50.9	
Item	Item	4. Determine to	Estimate the amount of nut	rients that will	be available eac	h year after the third o	onsecutive year of application	n
Item	Item			inount applic	A MACCIOIT AVAIR	able		
Total N	Total N	Colido (conumo			A Hactori availe	able		
Total N	Total N	Solids (assume	0% of nutrients retained in solid	is)				
Total P2O5	Total P2O5	Solids (assume	0% of nutrients retained in solid	is)		Available for Land		
Total K2O	Total K2O	Solids (assume	0% of nutrients retained in solid	ds) Nutrients (lb:	Percent Avail.	Available for Land Application (lbs)		
Liquids (assume 100% of nutrients retained in liquids) (Swine manure stored in covered storage) Item	Section Continue	Solids (assume	0% of nutrients retained in solice Item Total N	is) Nutrients (Ibe	Percent Avail.	Available for Land Application (lbs)		
Nutrients Nutrients Nutrients Nutrients Nutrients (lbs) Application (lbs) Nutrients Nutrients Nutrients Nutrients Nutrients Nutrient Nutr	Item	Solids (assume	0% of nutrients retained in solid Item	ds) Nutrients (lbs	0.73 0.90	Available for Land Application (lbs) 0 0		
Item	Item	Solids (assume	0% of nutrients retained in solid Item	ds) Nutrients (lbs	0.73 0.90	Available for Land Application (lbs) 0 0		
Nutrients (lbs)	Nutrients (lbs) Application (lbs)		0% of nutrients retained in solic Item	O O O	0.73 0.90 0.93	Available for Land Application (lbs) 0 0 0		
Nutrients (lbs)	Nutrients (lbs) Application (lbs)		0% of nutrients retained in solic Item	O O O	0.73 0.90 0.93	Available for Land Application (lbs) 0 0 0		
Total N 67,606 0.73 49,352 Total P2O5 60,518 0.85 51,440 Total K2O 60,814 0.85 51,692 5. Determine the nutrients required by the crop and soil to produce the yield goal 5a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 lbs/acre	Total N		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in	O O O	0.73 0.90 0.93 e manure stored	Available for Land Application (lbs) 0 0 0 in covered storage)		
Total P2O5 60,518 0.85 51,440 Total K2O 60,814 0.85 51,692 5. Determine the nutrients required by the crop and soil to produce the yield goal 5a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake	Total P2O5		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in	ds) Nutrients (Ibe	0.73 0.90 0.93 e manure stored	Available for Land Application (lbs) 0 0 0 in covered storage)		
5. Determine the nutrients required by the crop and soil to produce the yield goal 5a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 lbs/acre	Total K2O 60,814 0.85 51,692		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item	Nutrients (Ibe	0.73 0.90 0.93 e manure stored Percent Avail.	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs)		
5. Determine the nutrients required by the crop and soil to produce the yield goal 5a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 lbs/acre	Determine the nutrients required by the crop and soil to produce the yield goal a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 bs/acre P 24.7 bs/acre K 182 bs/acre Convert to Fertilizer Form N 244 bs/acre P205 57 bs/acre		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item	Nutrients (Ibe	0.73 0.90 0.93 e manure stored Percent Avail.	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs)		
5a (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 lbs/acre	A (1). Estimate the amount of nutrients removed by the crop using table 6-6. Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total N Total P2O5	0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518	0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.090	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440		
Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings) Nutrient Uptake N 244.4 lbs/acre	Using an average of Bermudagrass (3.25 tons/acre) x (2 cuttings)		0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total N Total P2O5	0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518	0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.090	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440		
Nutrient Uptake N 244.4 lbs/acre	Nutrient Uptake	Liquids (assum	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total N Total N Total P2O5 Total K2O	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814	0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692		
N 244.4 lbs/acre	N 244.4 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O Total R2O5 Total P2O5 Total P2O5 Total K2O	Nutrients (lbs)	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal		
N 244.4 lbs/acre	N 244.4 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O ne nutrients required by the cethe amount of nutrients rer	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil	Percent Avail. 0.73 0.90 0.93 emanure stored Percent Avail. 0.73 0.85 0.85 to produce the stored table	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
N 244.4 lbs/acre	N 244.4 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O ne nutrients required by the cethe amount of nutrients rer	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil	Percent Avail. 0.73 0.90 0.93 emanure stored Percent Avail. 0.73 0.85 0.85 to produce the stored table	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
	P 24.7 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O ne nutrients required by the column of nutrients rer Using an average of Bermu	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil	Percent Avail. 0.73 0.90 0.93 emanure stored Percent Avail. 0.73 0.85 0.85 to produce the stored table	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
IP 24.7 lhs/acre [K	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O Total R2O Total P2O5 Total K2O Total P2O5 Total K2O Total R2O	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 to produce the stored are using table tons/acre) x (2 of the store)	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
	Convert to Fertilizer Form	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the one nutrients	Nutrients (lbs 0	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 to produce the stored tons/acre) x (2 of the stored tons/acre)	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
TOZ IDS/AUTE	N 244 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the ce the amount of nutrients rer Using an average of Bermu Nutrient Uptake N P	Nutrients (lbs 0	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 co produce the stored tons/acre) x (2 columns/acre) lbs/acre	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
Convert to Fertilizer Form	N 244 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the ce the amount of nutrients rer Using an average of Bermu Nutrient Uptake N P	Nutrients (lbs 0	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 co produce the stored tons/acre) x (2 columns/acre) lbs/acre	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
	P2O5 57 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the companies of Bermu Using an average of Bermu Nutrient Uptake N P K	Nutrients (lbs 0	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 co produce the stored tons/acre) x (2 columns/acre) lbs/acre	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
		Liquids (assume	0% of nutrients retained in solid Item	0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil noved by the dagrass (3.25	Percent Avail. 0.73 0.90 0.93 e manure stored Percent Avail. 0.73 0.85 0.85 to produce the years and the produce the years are libs/acre libs/acre libs/acre	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
	100	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the or e the amount of nutrients rer Using an average of Bermu Nutrient Uptake N P K Convert to Fertilizer Form N	Nutrients (Ibs 0 0 0 0 liquids) (Swine Nutrients (Ibs) 67,606 60,518 60,814 crop and soil noved by the dagrass (3.25	Percent Avail. 0.73 0.90 0.93 manure stored Percent Avail. 0.73 0.85 0.85 to produce the year of the produce the year of year of the year of the year of the year of year	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
1/00	KZU 220 lbs/acre	Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O ne nutrients required by the companies of Bermu Using an average of Bermu Nutrient Uptake N P K Convert to Fertilizer Form N P2O5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percent Avail. 0.73 0.90 0.93 emanure stored Percent Avail. 0.73 0.85 0.85 to produce the stored tons/acre x (2 of the store) x (3 of the store) x (4 of the store) x (5 of the store) x (6 of the store) x (7 of the store) x (8 of the store) x (9 of the store) x (10 of the stor	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		
K2O 220 lbs/acre		Liquids (assume	0% of nutrients retained in solid Item Total N Total P2O5 Total K2O e 100% of nutrients retained in Item Total N Total P2O5 Total K2O e nutrients required by the or e the amount of nutrients rer Using an average of Bermu Nutrient Uptake N P K Convert to Fertilizer Form N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Percent Avail. 0.73 0.90 0.93 emanure stored Percent Avail. 0.73 0.85 0.85 to produce the stored tons/acre x (2 of the store) x (3 of the store) x (4 of the store) x (5 of the store) x (6 of the store) x (7 of the store) x (8 of the store) x (9 of the store) x (10 of the stor	Available for Land Application (lbs) 0 0 0 in covered storage) Available for Land Application (lbs) 49,352 51,440 51,692 yield goal e 6-6.		

		1						
E2 (2) Add 40 4h-	mlant roquirements addit	ional nitro	to replace and	instead desitations	1			
5a (2). Add to the	plant requirements addit Assume 2% organic matte				niosses			┝-
	Assume 270 organic matte	Content & Ino	derately well dra	ined soil	-			
	N =	244.4	281	lbs/acre				-
		0.87						
5- (0) 6-1-14- (1-		<u> </u>	<u> </u>	<u> </u>				_
5a (3). Add to the	plant requirements addit	ional nitrogen	to replace antic	cipated leaching los	ses			L
	Assume a leaching index of	of 6 inches						
	Assume a leadining index t	o inches			-			
	N =	281	323	lbs/acre				
		0.87						
0 4 11 - 1111						, <u></u>	1	_
6. Add additional	nitrogen to compensate f	or application	losses		ļ <u>-</u>			
	Solids				 			
	N =	323	538	lbs/acre				
		0.6						
	Liquids	000		lha fa auc				
-	N =	323 0.97		lbs/acre	 			
		1 0.97	<u> </u>		<u> </u>		<u> </u>	
7. Compute the a	cres on which manure car	n be applied to	use the nutrie	nts available.	Γ			
Nitrogen Basis								
Required Solids Ac								
 -	Required acres =	0						
Required Liquid Ac	res							
Troquil Ca Elquia 7 to	Required acres =	148						
Total Acres Nitrog	en Base	148						
Dhaankama Dai	(h							_
	s (based off P₂O₅/acre upt	аке)						
Required Solids Ac	res Required acres =	-0	ļ- 					
	Required acres -	U						
Required Liquid Ac	res							
	Required acres =	909						
Total Acres Phosp	phorus Base	909	, . - -			L		_
8 Compute Estim	nated Application Rate	** ** :	· · · · · · · · · · · · · · · · · · ·	A	· · · · ·	f y	auto pro-	1 1 1 1
o. Compate Latin	lated Application Nate	 -			-			
Estimated Annual S	Solids Waste for App.	n	ft ³	0.0	tons			
	iquid Waste for App.	471,073	ft ³	0.0	tono			
		,						
Nitrogen Basis								
Solids Application F			ft ³ /acre =	0.0	tons/acre			
Liquid Application R	Rate	3,177	ft ³ /acre =	0.88	in./acre			
Phosphorus Basis		 -		-				
Solids Application F		 	# ³ /para =		/			
Liquid Application R		F40	ft ³ /acre = ft ³ /acre =		tons/acre			\vdash
Fidure Abblication R	Nai c	518	n. /acre =	U.14	in./acre		<u> </u>	
	·	_						 - -
						-		Ē
								-
		·			<u></u>			

5 Year Crop Rotation & Yield Goal & Crop Nutrient Needs

Table 1. 5 Year Crop Rotation

Years	Fields	Commodity
One-Five	1, 2, & 4	Bermudagrass teamed with Tall Fescue, Rotational Pasture
One-Five	3 & 5-17	Bermudagrass teamed with Tall Fescue, Hay

Table 2. Plant Nutrient Uptake

	*% of the Dry Harvested Material			Nutrient U	Iptake, lb o	f nutrients			
County	State	Commodity	#Yield Goals (Tons)	N	P	к	N	p	к
Newton	Arkansas	#FORAGE, HAY (BERMUDAGRASS) #FORAGE, ROTATIONAL	6.5	1.88	0.19	1.4	244.4	24.7	182
McHenry	Arkansas	PASTURE (BERMUDAGRASS)	6.5	1.88	0.19	1.4	244.4	24.7	182

^{*} From Table 6.6 of Part 651 Agricultural Waste Mangement Field Handbook #U of A Cooperative Extension Service, yield goal for Northern Arkansas

Table 3. Convert Plant Nutrient Needs (N, P, K) to Fertilizer Form

	Hay	Pasture
N	244.4	244.4
P ₂ O ₅	56.6	56.6
K₂O	220.2	220.2

SECTION C2: DESIGN CALCULATIONS

Waste Production Calculations

۹.	Facili [.]	ty Information						
1.	Type o	f Construction:	⊠existing, □ pro	posed-new, or \Box	expansion			
2.	Buildin	-	estation Barn (Proposition Bar			-		
3.	Anima	al Capacity	3_head of_	Boars	@45	<u>0</u> lbs,	1,350	lbs Total
				Gestation Sows			787,500	
lm	avimum h	lead counts and		Lactating Sow			170,000	-
-	erage wei		<u>4,000</u> head of				40,000	
			nead of_		@	ibs,		lbs Total
		Total:	<i>6,503</i> head	Total A	Animal Weight	(TAW):	998,850	lbs
В.	Dete	mine Minimur	n Storage Requir	ement				•
	<u>Liquid</u>	Manure Storag	<u>e</u> oduction (UWP) in	cubic feet per day	per 1,000 pou	nds of ani	mal:	
٠		Cattle ☐Dairy = 1.3 ☐ Beef = 1.0	Swine ☑ Nursery Pig ☐ Grower/Fin ☑ Boar/Gesta ☑ Sow and Lit	isher = 1.0 ting Sow = 0.41	Poultry Layers = 0 Broiler = 1 Turkey = 0	.9	ther Horse = 0.8 Sheep = 0.6	
	(a)	-	uced: (TAW x (UWF r each type calculate	-	• • • • • • • • • • • • • • • • • • • •			/ 1,000 lbs
	(b)		Vashwater generato 0% of (a) is used)	ed in 180 days:	19,	<u>596</u> cubic	feet	
	(c)		plus Spillage and V	/ashwater, (a)+(b): <u>117,57</u>	cubic fe	et.	
•	Rainfa	all Data					**	
	(d)	25 Year- 24 Ho	our Rainfall Event: <u>(</u>	<u>0.58</u> Feet				

(e)	Precipitation-Evaporation October 1 – April 1) <u>0.92</u> Feet
(f)	Top of Waste Storage Pond 1 20,153 Square feet
(g)	Top of Waste Storage Pond 2 Square feet
(h)	Waste Storage Pond 1 25 Yr-24 Hr Storage Requirement (d) x (f):
(i)	Waste Storage Pond 2 25 Yr-24 Hr Storage Requirement (d) x (g): 11,089 cubic feet
(i)	Waste Storage Pond 1, 180 Day Net Precip. Requirement (e) x (f):
(k)	
(K)	Waste Storage Pond 2, 180 Day Net Precip. Requirement (e) x (g): 30,314 cubic feet
	rge Water -The farrowing barn will be pulled once every three weeks and the Gestation Barn will be
pullea	once every five weeks on a conservative estimate and will be recharged with 2" of fresh water.
(I) =	Recharge Water Produced Average: <u>366(cubic feet per day) x 180</u> (180 days in storage period) 65,880 cubic feet per 180 days.
Runof	<u>f</u>
(m)	Sand Lane and Stacking Pad Area:feet xfeet =square feet
(n)	Manure Stacking Pad Area:feet xfeet =square feet
(o)	Feed Stacking Pad Area:feet xfeet =square feet
(p)	Total Runoff Area:square feet
(q)	Minimum Runoff (Figure 1 from Appendix):inches
	If a covered storage is used which collects runoff, then the sum of the 25 year, 24 hour storm runoff and the expected runoff for the 180 day storage period is used as the Minimum Runoff in (m).
(r)	Minimum Runoff Storage Requirement (I) x (m)/12 =cubic feet
<u>Minim</u>	um Overall Storage Requirement
(s)	Minimum Storage Requirement (c) + (h-l) + (r):cubic feet

Waste Storage Calculations

A.	Determine Sto	orage Provided		
Тур	e of storage:	☐ Earthen Storage Pit☐ Underfloor Concrete Pit☐ Other (describe)	☑ Earthen Lagoon ☐ Concrete Tank ☐ Outside Concrete Pit	
NOTE:	diversion dimens		nformation will be included. Indicate the location of all diversion e runoff for the entire facility. Concrete pit or tank storage is	is,
Rec	tangular Concre	ete Pit or Tank (capacity = length >	‹ width x depth)	
			feet = <u>72,060</u> cubic feet (Manure Pit #1) feet = <u>29,483</u> cubic feet (Manure Pit #2)	
			= <u>101,543</u> cubic feet TOTAL	
Wa		<u>d 1</u> Volume = [(4 x sideslope ² x dept depth ²) + (bottomwidth x bottomler	th ³) / 3] + (sideslope x bottomlength x depth ²) + (sideslope x ngth x depth)	
	Bottom Length	n: Bottom Width	:	
	Design Full De	pth: <u>9.7</u> feet, Overflow	N Depth:feet	
	Side Slopes:	<u>3</u> :1 and <u>3</u> , End Slopes	s: <u>3</u> :1 and <u>3</u> :1	
	Note: Inside slo	pes for earthen pits or lagoons will	be at least 2:1.	
	Earthe	en Storage Pit or Lagoon Capacity	/:	
Waste		Volume = $[(4 \times sideslope^2 \times depth^3)]$ depth ²) + (bottomwidth x bottomler	$(3) + (sideslope \times bottomlength \times depth^2) + (sideslope \times ngth \times depth)$	
	Bottom Length	n: Bottom Width	:	
	Design Full De	pth: <u>12.2</u> feet, Overflov	v Depth: <u>13.2</u> feet	
	Side Slopes:	<u>3</u> :1 and <u>3</u> , End Slopes	s: <u>3</u> :1 and <u>3</u> :1	
	Note: Inside slo	pes for earthen pits or lagoons will	be at least 2:1.	
	Earthe	n Storage Pit or Lagoon Capacity	z:	
NO	ΓΕ: A minimum of	1.0 foot of freeboard is required fo	or uncovered storage.	
	TOTAL STORAG	GE PROVIDED: 416,106	<u>6</u> cubic feet	
NO	TE: The Total Store	age Provided will meet or exceed t	he Minimum Storage Requirement (item o) from Waste Producti	ons

			Maximum App	lication Rates in (nd Gallons Po	er Field	Annual N	1aximums*	Yearly	
-			1 st Timing Window	2 nd Tin	ing Window	3 rd	Timing	1000	1000	
			🥶 👢 Winter 🔻 🐇		Spring	Windo	w Summer	Gallons	Gallons	P
Field	Acres	Source	November 1 – February	28 March	March 1 – June 30		October 31	Acre	Field	Index
* , \$		14.14.1							٠,	ř.
· · · · · · · · · · · · · · · · · · ·	7.3	* HP 1	the first of the state	4,500/ac	32,850/field	4,000/ac	29,200/field	8.5	62.05	20
H2	6.0	HP1		4,500/ac	27,000/field	4,000/ac	24,000/field	8.5	51.0	24
Н3	13.6	HP.1		4,500/ac	61,200/field	4,000/ac	54,400/field	8.5	115.60	44
Н4	6.8	HP 1		4,500/ac	30,600/field	4,000/ac	27,200/field	8.5	57.80	24
Н7	64.3	HP1		6,000/ac	385,800/field	6,000/ac	385,800/field	12.0	771.60	61
Н8	8.6	HP 1		8,000/ac	68,800/field	8,000/ac	68,800/field	16.0	137.60	34
Н9	35.5	HP 1		6,500/ac	230,750/field	6,500/ac	230,750/field	13.0	461.50	54
H10	29.3	HP 1		8,000/ac	234,400/field	8,000/ac	234,400/field	16.0	468.80	34
H11	14.2	HP1		4,500/ac	63,900/field	4,000/ac	56,800/field	8.5	120.70	21
H12	11.4	HP1		7,000/ac	79,800/field	7,000/ac	79,800/field	14.0	159.60	63
H13	50.9	HP 1		4,500/ac	229,050/field	4,500/ac	229,050/field	9.0	458.10	24
H14	8.1	HP1		4,500/ac	36,450/field	4,500/ac	36,450/field	9.0	72.90	22
H15	37.5	HP1		4,500/ac	168,750/field	4,000/ac	150,000/field	8.5	318.75	26
H16	15.2	HP-1		4,500/ac	68,400/field	4,000/ac	60,800/field	8.5	129.20	35
H17	31.9	HP 1		8,000/ac	255,200/field	8,000/ac	255,200/field	16.0	510.40	53 °

^{*}Annual Maximums if applied during the appropriate timing windows.

Arkansas Nutrient Managemnt Planner with 2009 PI (Beta draft ver 09162015)

Planner:	Monica Hancock	•	Date:	3/1/2018
Plan Description:	2018 C & H Application Rates			

Beta Test Version for Use by Select Planners working with Author. This worksheet is intended to assist in the writing of Nutrient Management Plans for the application of manure to pasture and hay land. To do this, the worksheet estimates the litter production for the farm, estimates the P Index risk value for the defined conditions of each field, assists with the allocation of nutrients to the various receiving fields, and estimates the amount of litter available for off farm use. This worksheet is the result of an effort to develop a reliable training/planning tool faithful to the 2009 Arkansas P Index developed by a multi-agency effort. However, no guarantees are made, and any observed problems or suggestions for improvement should be directed to Karl VanDevender at kvan@uaex.edu.

Nutrient Source and Description Information

Manure Source	Source Type	Amount Available		N Concentration		P2O5 Concentration		K2O Concentration		Water Ex	Alum	
HP 1 Feb 2018	Liquid Manure	1	1000 gal	21.6	lb/1000 gal	28.3	lb/1000 gal	17.6	lb/1000 gal	1.20	lb/1000 gal	No
HP 2 Feb 2018	Liquid Manure	1	_ 1000 gal	8.3	lb/1000 gal	2.6	lb/1000 gal	15.2	lb/1000 gal	0.70	lb/1000 gal	No
							1					

Nutrient Loss and Mineralization Factors

	Nutrient Lo	ss and willer	alization rad	<u>ciors</u>				
		N	P2	205	K2O			
Manure Source	Storage	Appl.	Storage	Appi.	Storage	Appl.		
	Losses (%)	Losses (%)	Losses (%)	Losses (%)	Losses (%)	Losses (%)		
HP 1 Feb 2018		25%						
HP 2 Feb 2018		25%						
0								
0								
0								

Estimated Plant Available Nutrients

N			,	P2O5			K20	-	Water Extractable P			
ure Source Concentration		Total (lb)	Concentration		Total (lb)	Concentration		Total (lb)	Concentration		Total (lb)	
16.20	lb/1000 gal	16	28.30			17.60	17.60 lb/1000 gal		1,20 lb/1000 ga		1.2	
6.23	lb/1000 gal	6	2.60	lb/1000 gal	3	15.20	lb/1000 gal	15	0.70	lb/1000 gal	0.7	
						_				<u> </u>	_	
		·										
							·					
•		22			31		-	33			2	
	Conce 16.20	N Concentration 16.20 lb/1000 gal	N Concentration Total (lb) 16.20 lb/1000 gal 16 6.23 lb/1000 gal 6	N Concentration Total (lb) Concentration 16.20 lb/1000 gal 16 28.30 6.23 lb/1000 gal 6 2.60	N P2O5 Concentration Total (lb) Concentration 16.20 lb/1000 gal 16 28.30 lb/1000 gal 6.23 lb/1000 gal 6 2.60 lb/1000 gal	N P2O5 Concentration Total (lb) Concentration Total (lb) 16.20 lb/1000 gal 16 28.30 lb/1000 gal 28 6.23 lb/1000 gal 6 2.60 lb/1000 gal 3	N P2O5 Concentration Total (lb) Concentration Total (lb) Concentration 16.20 lb/1000 gal 16 28.30 lb/1000 gal 28 17.60 6.23 lb/1000 gal 6 2.60 lb/1000 gal 3 15.20	N P2O5 K2O Concentration Total (lb) Concentration Total (lb) Concentration 16.20 lb/1000 gal 16 28.30 lb/1000 gal 28 17.60 lb/1000 gal 6.23 lb/1000 gal 6 2.60 lb/1000 gal 3 15.20 lb/1000 gal	N P2O5 K2O Concentration Total (lb) Concentration Total (lb) Concentration Total (lb) 16.20 lb/1000 gal 16 28.30 lb/1000 gal 28 17.60 lb/1000 gal 18 6.23 lb/1000 gal 6 2.60 lb/1000 gal 3 15.20 lb/1000 gal 15	N P2O5 K2O W Concentration Total (lb) Concentration Tot	N P2O5 K2O Water Extractab	

Arkansas Nutrient Managemnt Planner with 2009 PI (Reta draft 11202017)

	and the transfer management is a second to the second transfer is a second to the second transfer is a second to the second transfer is a second transfer in the second transf
Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application Rates 3/1/2018

Beta Test Version for Use by Select Planners working with Author. This worksheet is intended to assist in the writing of Nutrient Management Plans for the application of manure to pasture and hay land. To do this, the worksheet estimates the litter production for the farm, estimates the P Index risk value for the defined conditions of each field, assists with the allocation of nutrients to the various receiving fields, and estimates the amount of litter available for off farm use. This worksheet is the result of an effort to develop a reliable training/planning tool faithful to the 2009 Arkansas P Index developed by a multi-agency effort. However, no guarantees are made, and any observed problems or suggestions for improvement should be directed to Karl VanDevender at kvandevender@uaex.edu. This version contains the Nov 2017 NRCS soils update.

			General F	ield Informat	tion	- General I	ield Informa	ation	- General	Field Inform	nation	Genera	Field Infor	mation	Gener	al Field Info
Field	s Shown	15		F: 11	Buffer	5."		0.714		Slope Gra	adient (%)			Slope Le	ength (ft)	
	Total nnual	Field	County	Field Area (ac)	Length (ft)	Buffer Width (ft)	Appl Area (ac)	Unit	Min	Max	Rep	Used	Min	Max	Rep	Used
PI	N Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
Value	(+/-)	(Column Default Value)	Newton				12.33			100						
20	-22	H1	Newton	15.60			15.60	42	3	8	5	5	15	75	45	45
24	-22	H2	Newton	17.00			17.00	43	8	20	14	14	15	30	20	20
44	-22	H3	Newton	13.60			13.60	48	0	3	2	2	15	75	45	45
24	-22	H4	Newton	8.80			8.80	43	8	20	14	14	15	30	20	20
61	-106	H7	Newton	74.30			74.30	48	0	3	2	2	15	75	45	45
34	-41	H8	Newton	15.50			15.50	51	2	5	2.5	2.5	15	75	45	45
54	-89	H9	Newton	41.20	200		41.20	50	0	3	2	2	15	75	45	45
34	-41	H10	Newton	33.20			33.20	51	2	5	2.5	2.5	15	75	45	45
21	-22	H11	Newton	20.70			20.70	43	8	20	14	14	15	30	20	20
63	-73	H12	Newton	23.70			23.70	50	0	3	2	2	15	75	45	45
24	-154	H13	Newton	61.60			61.60	43	8	20	14	14	15	30	20	20
22	-154	H14	Newton	18.00			18.00	43	8	20	14	14	15	30	20	20
26	-22	H15	Newton	61.00			61.00	43	8	20	14	14	15	30	20	20
35	-22	H16	Newton	79.60			79.60	50	0	3	2	2	15	75	45	45
53	-41	H17	Newton	88.70			88.70	1	3	8	5	5	15	75	45	45
Farm To	otals			572.50			572.50									

Available

Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutries	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	ılti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils update	te.

			rmation	General Fi	eld Information	1 G	eneral Field Inforn	nation General Field Inforn	nation				- /
Field	s Shown	15	Flooding	requency	Dradaminata	Percent	Conservation		DUCLE 1	DI ICI E 2			
	Total nnual	Field	Data Base Default	Used	Predominate Vegetation	Ground Cover	Support Practices (P)	Pasture Use	RUSLE 1 (ton/ac)	(ton/ac)	Diversion	Terrace	Pond
PI	N Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
Value	(+/-)	(Column Default Value)								- F. J. B. S.	20-12-13		
20	-22	H1	None	None	Grass	95-100	None	Rotational Grazing	0.12	0.12	SATE PER		
24	-22	H2	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28			
44	-22	H3	Occasional	Occasional	Grass	95-100	None	Rotational Grazing	0.05	0.05			
24	-22	H4	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28	5		
61	-106	H7	Occasional	Occasional	Grass	95-100	None	Rotational Grazing	0.05	0.05		Fire control	
34	-41	H8	None	None	Grass	95-100	None	Rotational Grazing	0.05	0.05			
54	-89	H9	Occasional	Occasional	Grass	95-100	None	Rotational Grazing	0.05	0.05			
34	-41	H10	None	None	Grass	95-100	None	Rotational Grazing	0.05	0.05			
21	-22	H11	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28		7.1 May 1.5 May 18	
63	-73	H12	Occasional	Occasional	Grass	95-100	None	Rotational Grazing	0.05	0.05			
24	-154	H13	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28			
22	-154	H14	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28			
26	-22	H15	None	None	Grass	95-100	None	Rotational Grazing	0.26	0.28			
35	-22	H16	Occasional	Occasional	Grass	95-100	None	Rotational Grazing	0.05	0.05			
53	-41	H17	None	None	Grass	95-100	None	Rotational Grazing	0.12	0.12			

Farm Totals
Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners wor
of Nutrient Manager	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrien	ts to the various receiving fields, a
worksheet is the res	sult of an effort to develop a reliable
developed by a mul	ti-agency effort. However, no guar
improvement should	d be directed to Karl VanDevender
NRCS soils update	9.

		The second second second	dditional E	Best Manage	ment Pract	ices			Nutrient Application Information Nutrient Application Information Nutrient App								
Field	s Shown	15				Riparian	Riparian	Final	Applicat	ion Group 1	Application	Group 1	Applica	ation Gro	up 1		
1	Total nnual	Field	Filter Strip	Grassed Waterway	Fencing	Forest Buffer	Herbaceous Cover	Field Borders	Timing	Appl Method	Nutrient Source	Bulk Rate	Units	N	P2O5	K20	
PI	N		1											(lb/ac)	(lb/ac)	(lb/ac)	
	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	
Value	(+/-)	(Column Default Value)					at not the		March-June	Surface	HP 1 Feb 2018		CAPTER THE				
20	-22	H1							March-June	Surface	HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
24	-22	H2							March-June	Surface	HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
44	-22	H3	194						March-June	Surface	HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
24	-22	H4							March-June	Surface	HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
61	-106	H7							March-June		HP 1 Feb 2018	6.00	1000 gal/ac	97	170	106	
34	-41	H8							March-June	Surface	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	
54	-89	H9							March-June	Surface	HP 1 Feb 2018	6.50	1000 gal/ac	105	184	114	
34	-41	H10							March-June	THE RESERVE AND ADDRESS OF THE PARTY OF THE	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	
21	-22	H11	- 2						March-June		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
63	-73	H12							March-June	Surface	HP 1 Feb 2018	7.00	1000 gal/ac	113	198	123	
24	-154	H13				190		100	March-June		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
22	-154	H14		4-1-27					March-June		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
26	-22	H15							March-June		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
35	-22	H16					4 19 19		March-June		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	
53	-41	H17							March-June	Surface	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	

Farm Totals

Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
worksheet is the re developed by a mu	nts to the various receiving fields, a sult of an effort to develop a reliable lti-agency effort. However, no guar d be directed to Karl VanDevender e.

, ,			lication	Information -	Nutrie	nt Applica	tion Information -	Nutrie	ent Application	n Informa	tion	Nutri	ent Appl	ication Inforn	nation	- Nutrient	
Field	s Shown	15			Applicat	tion Group	2 Applic	cation Group	2 A	pplication	Group 2	2			Applica	Application Group	
1	Γotal nnual	Field		Group Sub	Timing	Appl	Nutrient Source	Bulk Rate	Units	N	P2O5	K20		Group Sub	Timing	Appl	
	N		Sub PI	PI Range		Method				(lb/ac)	(lb/ac)	(lb/ac)	Sub Pi	PI Range		Method	
PI	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	
Value	(+/-)	(Column Default Value)		100000	July-Oct	Surface	HP 1 Feb 2018										
20	-22	H1	8	Low	July-Oct	Surface	HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	5	Low			
24	-22	H2	9	Low	July-Oct	Surface	HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	6	Low		1	
44	-22	H3	15	Low	July-Oct	Surface	HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	12	Low			
24	-22	H4	9	Low	July-Oct		HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	6	Low	1.00		
61	-106	H7	20	Low	July-Oct	Surface	HP 1 Feb 2018	6.00	1000 gal/ac	97	170	106	17	Low		100	
34	-41	H8	15	Low	July-Oct	Surface	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	11	Low	7.86.5	1 100	
54	-89	H9	22	Low	July-Oct	Surface	HP 1 Feb 2018	6.50	1000 gal/ac	105	184	114	19	Low			
34	-41	H10	15	Low	July-Oct	Surface	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	11	Low		1000	
21	-22	H11	9	Low	July-Oct	Surface	HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	6	Low			
63	-73	H12	23	Low	July-Oct	Surface	HP 1 Feb 2018	7.00	1000 gal/ac	113	198	123	20	Low			
24	-154	H13	9	Low -	July-Oct		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	7	Low			
22	-154	H14	9	Low	July-Oct		HP 1 Feb 2018	4.50	1000 gal/ac	73	127	79	7	Low			
26	-22	H15	9	Low	July-Oct		HP 1 Feb 2018	4.00	1000 gal/ac	65	113	70	6	Low			
35	-22	H16	15	Low	July-Oct		HP 1 Feb 2018		1000 gal/ac	65	113	70	12	Low	135 M S		
53	-41	H17	23	Low	July-Oct	Surface	HP 1 Feb 2018	8.00	1000 gal/ac	130	226	141	19	Low			

Farm Totals
Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
the litter production allocation of nutrien worksheet is the re- developed by a mul	ment Plans for the application of n for the farm, estimates the P Inde its to the various receiving fields, a sult of an effort to develop a reliable ti-agency effort. However, no guar d be directed to Karl VanDevender e.

		Applications of the first series	Application Inform	nation	 Nutrient A 	pplication	Informati	ion	Nutrie	ent Applicatio	n Information	n N	lutrient Application	n Information	Nu	trient App
Field	s Shown	15	3 Appli	cation Group	3	Application	Group 3	3			Applica	ition Group	4 Applic	cation Group	4	Applicatio
1	otal nnual	Field	Nutrient Source	Bulk Rate	Units	N	P2O5	K20		Group Sub	Timing	Appl	Nutrient Source	Bulk Rate	Units	N
PI	N					(lb/ac)	(lb/ac)	(lb/ac)	Sub Pi	PI Range		Method				(lb/ac)
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)								500						
20	-22	H1														
24	-22	H2					199			1.5						4.5
44	-22	H3					7.1									
24	-22	H4					77.00	State of the state						3.7965		1 100
61	-106	H7									100000000000000000000000000000000000000	10000	100000			
34	-41	H8				197						1 1 1				
54	-89	H9													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
34	-41	H10														
21	-22	H11	经							1 - 1				2 10 20 20		
63	-73	H12											1000			
24	-154	H13		G00000000		-				27 29						
22	-154	H14				-	- 22.2		36							1
26	-22	H15												95 Temperature		
35	-22	H16						-								
53	-41	H17			15.00									The state of the		

Farm Totals
Available
Surpluses/Deficits (+/-)

Planner: Monica Hancock
Plan Description: 2018 C & H Starting Application |
Beta Test Version for Use by Select Planners wor
of Nutrient Management Plans for the application of n
the litter production for the farm, estimates the P Inde
allocation of nutrients to the various receiving fields, a
worksheet is the result of an effort to develop a reliabl
developed by a multi-agency effort. However, no guar
improvement should be directed to Karl VanDevender
NRCS soils update.

		The same of the sa	lication I	nformatio	on		Soi	Test P	and Soil Si	ub PI			T	otal =	300	21
Field	s Shown	15	n Group	4				× 3393		0.10.1	1	tion Totals		pplications	Ap	plication Rate To
	Total nnual	Field	P2O5	K2O	Group Sub Pl	Group Sub PI Range	ppm	lb/ac	Soil Sub PI	Soil Sub Range	App Sub	App Sub Pls Range	Total PI Value	PI Range	N (lb/ac)	P2O5 (lb/ac)
PI	N		(lb/ac)	(lb/ac)	Sub Pi	Pikange					Pis Sum	Pis Range	value			
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)		72												
20	-22	H1			32 4 4		87	116	7	Low	13	Low	20	Low	138	241
24	-22	H2					104	138	9	Low	15	Low	24	Low	138	241
44	-22	H3					118	157	17	Low	27	Low	44	Medium	138	241
24	-22	H4			4 1 14		109	145	9	Low	15	Low	24	Low	138	241
61	-106	H7				4 1	165	219	24	Low	37	Medium	61	Medium	194	340
34	-41	H8					101	134	8	Low	26	Low	34	Medium	259	453
54	-89	H9					89	118	13	Low	41	Medium	54	Medium	211	368
34	-41	H10					100	133	8	Low	26	Low	34	Medium	259	453
21	-22	H11					65	86	6	Low	15	Low	21	Low	138	241
63	-73	H12					138	184	20	Low	43	Medium	63	Medium	227	396
24	-154	H13					88	117	8	Low	16	Low	24	Low	146	255
22	-154	H14					65	86	6	Low	16	Low	22	Low	146	255
26	-22	H15					132	176	11	Low	15	Low	26	Low	138	241
35	-22	H16					58	77	8	Low	27	Low	35	Medium	138	241
53	-41	H17					87	116	11	Low	42	Medium	53	Medium	259	453

Farm Totals Available

Surpluses/Deficits (+/-)

Planning

Arkansas Nutrient Managemnt

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutries	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	Ilti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils update	te.

				Per	Acre Nutrient Bu	ıdget				Per Field I	Nutrient Budget -	Per Fiel
Field	s Shown	15	tals	Nutr	ient Recommend	lation	Su	rpluses / Deficits	(+/-)	Ap	oplication Rate To	otals
	Total nnual	Field	K2O (lb/ac)	N (lb/ac)	P2O5 (lb/ac)	K2O (lb/ac)	N (lb/ac)	P2O5 (lb/ac)	K2O (lb/ac)	N (lb/field)	P2O5 (lb/field)	K2O (lb/field)
PI	N								200			
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)					A 44 A					
20	-22	H1	150	160	0	0	-22	241	150	2,148	3,753	2,334
24	-22	H2	150	160	0	0	-22	241	150	2,341	4,089	2,543
44	-22	H3	150	160	0	60	-22	241	90	1,873	3,271	2,035
24	-22	H4	150	160	0	40	-22	241	110	1,212	2,117	1,316
61	-106	H7	211	300	0	300	-106	340	-89	14,444	25,232	15,692
34	-41	H8	282	300	0	300	-41	453	-18	4,018	7,018	4,365
54	-89	H9	229	300	0	250	-89	368	-21	8,677	15,157	9,427
34	-41	H10	282	300	0	250	-41	453	32	8,605	15,033	9,349
21	-22	H11	150	160	0	0	-22	241	150	2,850	4,979	3,097
63	-73	H12	246	300	0	0	-73	396	246	5,375	9,390	5,840
24	-154	H13	158	300	0	200	-154	255	-42	8,981	15,690	9,757
22	-154	H14	158	300	0	250	-154	255	-92	2,624	4,585	2,851
26	-22	H15	150	160	0	0	-22	241	150	8,400	14,674	9,126
35	-22	H16	150	160	0	40	-22	241	110	10,961	19,148	11,908
53	-41	H17	282	300	0	300	-41	453	-18	22,991	40,163	24,978
		Links and the second se		NAME AND ADDRESS OF THE OWNER, WHEN PERSON AND PARTY AND PARTY AND PARTY AND PARTY AND PARTY AND PARTY.		A CORPORATION OF THE PARTY OF T	Control of the Contro			105 500	101000	444047

Farm Totals
Available
Surpluses/Deficits (+/-)

114,617 33 -114,585 105,500 184,300 31 -184,269 22 -105,478

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrier	its to the various receiving fields, a
worksheet is the re-	sult of an effort to develop a reliable
developed by a mu	lti-agency effort. However, no guar
improvement shoul	d be directed to Karl VanDevender
NRCS soils updat	e.

- - - Manure Distribution Summary, Grouped by Source, Appl T

			Nutrient Budge	et Per Fie	eld Nutrient Budg	get Pei	r Field Nutrient Bi	udget				
Field	s Shown	15	Nutrient	Recommendation	n (lb/field)	Sur	pluses / Deficits	(+/-)		March-June		7.
	Fotal nnual	Field	N (lb/field)	P2O5 (lb/field)	K2O (lb/field)	N (lb/field)	P2O5 (lb/field)	K2O (lb/field)	Per Acre	Per Field	Appl PI	Per Acre
PI	N	(0.1 0)			01		01	Ol			O.L	
Value	Balance (+/-)	(Column Shown Value) (Column Default Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
20	-22	H1	2,496	0	0	-348	3,753	2,334	4.50	70.20	8	4.00
24	-22	H2	2,720	0	0	-379	4,089	2,543	4.50	76.50	9	4.00
44	-22	H3	2,176	0	816	-303	3,271	1,219	4.50	61.20	15	4.00
24	-22	H4	1,408	0	352	-196	2,117	964	4.50	39.60	9	4.00
61	-106	H7	22,290	0	22,290	-7,846	25,232	-6,598	6.00	445.80	20	6.00
34	-41	H8	4,650	0	4,650	-632	7,018	-285	8.00	124.00	15	8.00
54	-89	H9	12,360	0	10,300	-3,683	15,157	-873	6.50	267.80	22	6.50
34	-41	H10	9,960	0	8,300	-1,355	15,033	1,049	8.00	265.60	15	8.00
21	-22	H11	3,312	0	0	-462	4,979	3,097	4.50	93.15	9	4.00
63	-73	H12	7,110	0	0	-1,735	9,390	5,840	7.00	165.90	23	7.00
24	-154	H13	18,480	0	12,320	-9,499	15,690	-2,563	4.50	277.20	9	4.50
22	-154	H14	5,400	0	4,500	-2,776	4,585	-1,649	4.50	81.00	9	4.50
26	-22	H15	9,760	0	0	-1,360	14,674	9,126	4.50	274.50	9	4.00
35	-22	H16	12,736	0	3,184	-1,775	19,148	8,724	4.50	358.20	15	4.00
53	-41	H17	26,610	0	26,610	-3,619	40,163	-1,632	8.00	709.60	23	8.00
rm T	otale		141 468	n	93 322	-35 968	184 300	21 295		3310.25	and the same of the same	

Farm Totals

Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrier	its to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	lti-agency effort. However, no guar
improvement shoul	d be directed to Karl VanDevende
NRCS soils updat	e.

ime, Field - - - - - Manure Distribution Summary, Grouped by Source, Appl Time, Field - - - - - Manure Distribution Summary, Grouped by Source, Appl Time

				HP 1 Fe	eb 2018							
				1000	0 gal		2.7					
Field	s Shown	15	July-Oct		Nov-Feb			76.	Annual			March-June
Total Annual		Field	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field
PI	N											
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
	(+/-)	(Column Default Value)										
20	-22	H1	62.40	5				8.50	132.60	13.00		
24	-22	H2	68.00	6			No. of the second	8.50	144.50	15.00		
44	-22	H3	54.40	12				8.50	115.60	27.00		
24	-22	H4	35.20	6				8.50	74.80	15.00		
61	-106	H7	445.80	17		E-36-77 ()		12.00	891.60	37.00		
34	-41	H8	124.00	11				16.00	248.00	26.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
54	-89	H9	267.80	19		4 -		13.00	535.60	41.00		
34	-41	H10	265.60	11				16.00	531.20	26.00	2/2	The same of the
21	-22	H11	82.80	6				8.50	175.95	15.00		
63	-73	H12	165.90	20				14.00	331.80	43.00		
24	-154	H13	277.20	7		74.		9.00	554.40	16.00		
22	-154	H14	81.00	7				9.00	162.00	16.00		
26	-22	H15	244.00	6				8.50	518.50	15.00		
35	-22	H16	318.40	12				8.50	676.60	27.00		
53	-41	H17	709.60	19				16.00	1419.20	42.00		
			00000						0540.05			

Farm Totals

3202.10

6512.35

Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners wor
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrier	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	lti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils updat	te.

, Field - - - - - Manure Distribution Summary, Grouped by Source, Appl Time, Field - - - - - Manure Distribution Summary, Grouped by Source, Appl Time, Fie

						HP 2 Fe				V		
					1 1 1	1000	gal gal				6 3	- 1
Field	ls Shown	15	- 5		July-Oct			Nov-Feb		Annual		
	Total	Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI
PI	N					CI.						
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)										
20	-22	H1		35 21								100
24	-22	H2										
44	-22	H3	- 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1									
24	-22	H4	A Section 19									
61	-106	H7										
34	-41	H8										
54	-89	H9	2	7.00								E 80 CB T. F.
34	-41	H10										
21	-22	H11								-9		
63	-73	H12				2.3					ANT - I	
24	-154	H13			7 3 TO 10						572	
22	-154	H14										
26	-22	H15										2.230
35	-22	H16	45 45		100000000000000000000000000000000000000							
53	-41	H17									10 To	and the second
Т		And the second s										

Farm Totals

Available

Surpluses/Deficits (+/-)

Planner: Monica Hancock
Plan Description: 2018 C & H Starting Application |
Beta Test Version for Use by Select Planners worn
of Nutrient Management Plans for the application of n
the litter production for the farm, estimates the P Inde
allocation of nutrients to the various receiving fields, a
worksheet is the result of an effort to develop a reliabl
developed by a multi-agency effort. However, no guar
improvement should be directed to Karl VanDevender
NRCS soils update.

<u>sld - - - - - Manure Distribution Summary, Grouped by Source, Appl Time, Field - - - - - Manure Distribution Summary, Grouped by Source, Appl Time, Field - Sources</u>

- 117	s Shown	15		March-June			July-Oct			Nov-Feb		
	nnual	Field	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre
PI	N Balance	(Column Shown Value)			01							
Value		(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
00	(+/-)	(Column Default Value)		0.00								
20		H1										
24	-22	H2				Sales Sales						
44	-22	H3										
24	-22	H4										
61	-106	H7					The state of the s			The same and the		
34		H8		Carl Carl	3. / / / / / / / / / / / / / / / / / / /							A CONTRACTOR
54	-89	H9	To be a second								2 / 1/2 / 2 / 2	
34	-41	H10		2	102						74	
21	-22	H11								Co. III		
63	-73	H12	100									
24	-154	H13				15 th 15 15 15 15 15 15 15 15 15 15 15 15 15	-4 -4					
22	-154	H14										
26	-22	H15										-
35	-22	H16										
53	-41	H17										

Farm Totals

Available

Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrier	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	lti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils update	te.

---- Manure Distribution Summary, Grouped by Source, Appl Time, Field ----- Manure Distribution Summary, Grouped by Source, Appl Time, Field ----

Fields Shown		15	Annual	Annual		March-June			July-Oct			Nov-Feb	
	Total nnual	Field	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	
PI Value	N Balance (+/-)	(Column Shown Value) (Column Default Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	
20	-22	H1											
24	-22	H2											
44	-22	H3								2.77			
24	-22	H4											
61	-106	H7											
34		H8 H9										1	
54 34	-89 -41	H10											
21	-22	H11							27.7				
63	-73	H12											
24	-154	H13					3				1500		
22	-154	H14											
26	-22	H15											
35	-22	H16		3/1/2/2/2						-			
53	-41	H17						The state of the s					

Farm Totals

Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners world
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
worksheet is the re	nts to the various receiving fields, a sult of an effort to develop a reliable
, ,	ılti-agency effort. However, no guar
	ld be directed to Karl VanDevende
NRCS soils update	te.

-- Manure Distribution Summary, Grouped by Source, Appl Time, Field ----- Manure Distribution Summary, Grouped by Source, Appl Time, Field -----

	0.1										2-00-0		
Field	s Shown	15			Annual			March-June		July-Oct			
Total Annual		Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	
PI	N	(Column Chourn Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	
Value	Balance (+/-)	(Column Shown Value) (Column Default Value)	Silow	SHOW	Show	Snow	SHOW	Snow	Silow	Silow	SHOW	SHOW	
20	-22	H1											
24	-22	H2											
44	-22	H3							A STATE OF THE STA				
24	-22	H4				49 1 1 1 1 1 1 2 1 2				100			
61	-106	H7			1/1					17 1 1 1 1 1 1 1 1 1		44	
34	-41	H8											
54	-89	H9									- May 75 May		
34	-41	H10											
21	-22	H11											
63		H12	1 2 2					3					
24		H13											
22		H14											
26		H15											
35 53		H16 H17											

Farm Totals

Available
Surpluses/Deficits (+/-)

Planner:											
Plan Description:	2018 C & H Starting Application I										
Beta Test Version	for Use by Select Planners world										
	ment Plans for the application of n										
the litter production	for the farm, estimates the P Inde										
worksheet is the res	ts to the various receiving fields, a sult of an effort to develop a reliabl ti-agency effort. However, no quar										
	d be directed to Karl VanDevende										

Annual Appl Totals Dry Liquid

6512.35

	01													
Field	s Shown	15		Nov-Feb	1		Annual			ton			1000 ga	
1	Total nnual	Field	Per Acre	Per Field	Appl PI									
PI	N												1 icia	
Value	Balance	(Column Shown Value)	Show	Show	Show									
	(+/-)	(Column Default Value)												
20	-22	H1						9.				8.50	132.60	13
24	-22	H2										8.50	144.50	15
44	-22	H3										8.50	115.60	27
24	-22	H4									100	8.50	74.80	15
61	-106	H7								2.5		12.00	891.60	37
34	-41	H8	Ca.					eden in		San 1		16.00	248.00	26
54	-89	H9										13.00	535.60	41
34	-41	H10										16.00	531.20	26
21	-22	H11	*					1		24 14		8.50	175.95	15
63	-73	H12								- 3	1000	14.00	331.80	43
24	-154	H13						-40				9.00	554.40	16
22	-154	H14									7 5 6 1	9.00	162.00	16
26	-22	H15									2.4	8.50	518.50	15
35	-22	H16										8.50	676.60	27
53	-41	H17										16.00	1419.20	42

Farm Totals Available

Surpluses/Deficits (+/-)

Planner: Monica Hancock
Plan Description: 2018 C & H Starting Application I

Beta Test Version for Use by Select Planners worn
of Nutrient Management Plans for the application of n
the litter production for the farm, estimates the P Inde
allocation of nutrients to the various receiving fields, a
worksheet is the result of an effort to develop a reliabl
developed by a multi-agency effort. However, no guar
improvement should be directed to Karl VanDevender
NRCS soils update.

			190					7	Manur	e Distribution	on Summary	, Grouped I	by Appl Tim	ne, Source, F	ield
					Annual				Application	Time					
Field	s Shown	15	Total	s	oil only PI			Fotal PI = oplications	Н	IP 1 Feb 20 1000 gal	18	Н	IP 2 Feb 20 1000 gal	118	
	rotal nnual	Field	Appl PI			Total PI Value	PI Range	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	
PI	N Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Chau			Chau			Chau	
Value	(+/-)	(Column Default Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
20		H1	13	March-June	7	Low	20	Low							
24	-22	H2	15	March-June	9	Low	24	Low							
44	-22	H3	27	March-June	17	Low	44	Medium							
24		H4	15	March-June	9	Low	24	Low			27 6 6 6	C			
61		H7	37	March-June	24	Low	61	Medium					******		
34	-41	H8	26	March-June	8	Low	34	Medium							
54	-89	H9 _	41	March-June	13	Low	54	Medium	144		- A				
34	-41	H10	26	March-June	8	Low	34	Medium				3			
21	-22	H11	15	March-June	6	Low	21	Low				2 1			
63		H12	43	March-June	20	Low	63	Medium							
24		H13	16	March-June	8	Low	24	Low		the state of					
22		H14	16	March-June	6	Low	22	Low							4 1 4
26		H15	15	March-June	11	Low	26	Low							
35		H16	27	March-June	8	Low	35	Medium							
53		H17	42	March-June	11	Low	53	Medium							

Farm Totals

Available

Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners wor
of Nutrient Manage	ement Plans for the application of n
the litter production	n for the farm, estimates the P Inde
allocation of nutrie	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	ılti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils unda	to

			- Manure D	Distribution S	ummary, G	rouped by	Appl Time, S	Source, Fiel	d N	Manure Distr	ibution Sun	nmary, Gro	uped by App	l Time, Sou	rce, Field -	Mar
	, i.e.					Nov	v-Feb									
										All Sources						
	s Shown	15								2	ton		1000 gal			
	Γotal nnual	Field	Per Field	Appl PI	Рег	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI
PI	N		Field		Acre	rielu		Acre	Field		Acie	Field		Acre	Field	
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)														
20	-22	H1	70.0													
24	-22	H2														
44	-22	H3									2 - 2				Park Comment	
24	-22	H4			5 5 125											
61	-106	H7		8												
34	-41	H8														
54	-89	H9	en de la companya de													
34	-41	H10														
21	-22	H11														•
63	-73	H12														
24	-154	H13								100						
22	-154	H14		17.19												
26	-22	H15														
35	-22	H16												20.5		C. 181
53	-41	H17														

Farm Totals Available Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ement Plans for the application of n
the litter production	n for the farm, estimates the P Inde
allocation of nutrie	nts to the various receiving fields, a
worksheet is the re	esult of an effort to develop a reliable
developed by a mu	ılti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevende
NRCS soils upda	te.

			re Distribut	on Summa	ry, Grouped	by Appl Tin	ne, Source,	Field	Manure I	Distribution	Summary,	Grouped by	Appl Time,	Source, Fi	eld	Manure [
														Marc	L h-June	
				Н	IP 1 Feb 20	18	Н	P 2 Feb 20	18		7.			Waro	Tround	
Field	s Shown	15	Total		1000 gal		1000 gal			12						
	Total nnual	Field	Anni Pi Per Per Anni Pi Per		I Anni Pi I		Per	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per			
PI	N			Acre	Field		Acre	Field		Acre	rielu		Acre	rieid		Acre
√alue	Balance	(Column Shown Val	ue) Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Val	ue)	42, 2		out by				100						
20	-22	H1		4.50	70.20	8										
24	-22	H2		4.50	76.50	9		45.542.11								
44	-22	H3		4.50	61.20	15										
24	-22	H4		4.50	39.60	9									3 7 6 6	
61	-106	H7		6.00	445.80	20										
34	-41	H8		8.00	124.00	15			137-136							
54	-89	H9		6.50	267.80	22	275								100	
34	-41	H10		8.00	265.60	15		Charles .								
21	-22	H11		4.50	93.15	9							age of the			
63	-73	H12		7.00	165.90	23				200						
24	-154	H13		4.50	277.20	9	2 1 1		V.				1			
22	-154	H14		4.50	81.00	9			1 11							
26	-22	H15		4.50	274.50	9										
35	-22	H16		4.50	358.20	15										
53	-41	H17		8.00	709.60 3310.25	23										

Farm Totals
Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners wor
of Nutrient Manage	ement Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrie	nts to the various receiving fields, a
worksheet is the re	sult of an effort to develop a reliable
developed by a mu	ılti-agency effort. However, no guar
improvement shou	ld be directed to Karl VanDevender
NRCS soils upday	te.

All Sources HP 1 Feb 2018 HP 2 Feb 20 Fields Shown 1000 gal ton 1000 gal 1000 gal Total 15 Total Per Per Per Per Per Per Per Per Per Annual Field Appl PI Appl PI Appl PI Appl PI Appl PI Field Acre Field Acre Field Field Acre Acre Field Balance (Column Shown Value) Show Value (Column Default Value) (+/-)20 -22 H1 4.50 70.20 8 4.00 62.40 8 5 24 -22 H2 76.50 4.50 9 9 4.00 68.00 6 НЗ 44 -22 4.50 61.20 15 15 4.00 54.40 12 24 -22 H4 4.50 39.60 9 9 4.00 35.20 6 61 -106 H7 6.00 445.80 20 20 17 6.00 445.80 H8 H9 34 -41 8.00 124.00 15 15 8.00 124.00 11 54 -89 6.50 267.80 22 22 6.50 267.80 19 34 -41 H10 8.00 265.60 15 15 8.00 265.60 11 21 -22 H11 4.50 93.15 9 9 4.00 82.80 6 H12 63 -73 7.00 165.90 23 23 165.90 7.00 20 24 -154 H13 4.50 277.20 9 9 4.50 277.20 7 H14 22 -154 4.50 81.00 9 9 4.50 81.00 26 -22 H15 274.50 4.50 9 9 4.00 244.00 6 35 -22 H16 4.50 358.20 15 15 4.00 318.40 12 53 -41 H17 8.00 709.60 23 23 8.00 709.60 19 3310.25 3202.10

Farm Totals

Available

Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
	nts to the various receiving fields, a
	sult of an effort to develop a reliable
, ,	Iti-agency effort. However, no guar
	d be directed to Karl VanDevende
NRCS soils updat	e.

			n Summary	, Grouped	by Appl Tin	ne, Source,	Field	- Manure I	Distribution S	Summary, C	Frouped by	Appl Time,	Source, Fie	ld I	Manure Distr	ibution Sur
								Lub	y-Oct					<u> </u>		
			18					July	y-Oct				I and a second			All Sources
Field	ls Shown	15							-2					ton		
	Total nnual	Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre	Per Field	Appl PI	Per Acre
PI	N Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
Value	(+/-)	(Column Default Value)	Silow	SHOW	SHOW	SHOW	SHOW	SHOW	GIIOW	Onow	Onow	Onow	Onow	Onow	Onow	CHOW
20	-22	H1								3 24 3	- 3					4.00
24	-22	H2		6 7 2												4.00
44	-22	H3						w 27 a								4.00
24	-22	H4					1 (38)							(A) 14-14		4.00
61	-106	H7					1 1 1 1		100							6.00
34	-41	H8														8.00
54	-89	H9							and the second							6.50
34	-41	H10													-	8.00
21	-22	H11														4.00 7.00
63	-73	H12							-			-				4.50
24	-154	H13				-			-			-				4.50
22	-154 -22	H14 H15							-			-				4.00
26 35	-22	H16										1				4.00
53	-22	H17										1				8.00

Farm Totals
Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application I
Beta Test Version	for Use by Select Planners world
of Nutrient Manager	nent Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrient	s to the various receiving fields, a
worksheet is the res	ult of an effort to develop a reliable
developed by a mult	i-agency effort. However, no guar
improvement should	be directed to Karl VanDevender
NRCS soils update	

			mary, Gro	upea by App	i ime, So	T Field -	T Mar	iure Distribu	uon Summ	ary, Groupe I	ed by Appl T	ime, Source	e, ⊦ieid T	Manure	Distributio	n Summa
					L	Annual	-									
			4				P 1 Feb 20	18	Н	P 2 Feb 20	18					
Fields Shown		15	1000 gal Total		1000 gal		1000 gal									
Total Annual		Field	Per Field	Appl PI	Appl PI	Per Acre	I Anni Pi I		Per Per Appl PI		Per Acre	Per Field	Appl PI	Per	Per Field	
PI	N								Acre						Acre	12200
Value	Balance	(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
	(+/-)	(Column Default Value)							A.9	7.5			100			
20	-22	H1	62.40	5	5	8.50	132.60	13.00								
24	-22	H2	68.00	6	6	8.50	144.50	15.00		- d						
44	-22	H3	54.40	12	12	8.50	115.60	27.00								
24	-22	H4	35.20	6	6	8.50	74.80	15.00			E a company					7 7 7
61	-106	H7	445.80	17	17	12.00	891.60	37.00		July Control						7 - P
34	-41	H8	124.00	11	11	16.00	248.00	26.00	X	34						
54	-89	H9	267.80	19	19	13.00	535.60	41.00			100000					
34	-41	H10	265.60	11	11	16.00	531.20	26.00	3-13-13	A 6-3		_				Charles A
21	-22	H11	82.80	6	6	8.50	175.95	15.00						100 100 100	1 2	
63	-73	H12	165.90	20	20	14.00	331.80	43.00								A Section
24	-154	H13	277.20	7	7	9.00	554.40	16.00	5 J							
22	-154	H14	81.00	7	7	9.00	162.00	16.00								
26	-22	H15	244.00	6	6	8.50	518.50	15.00							We File	
35	-22	H16	318.40	12	12	8.50	676.60	27.00		4		4.4		3.7 4.5		
53	-41	H17	709.60	19	19	16.00	1419.20	42.00		400						
arm To			3202.10				6512.35									

53 -41 H17
Farm Totals
Available
Surpluses/Deficits (+/-)

Planner:	Monica Hancock
Plan Description:	2018 C & H Starting Application
Beta Test Version	for Use by Select Planners work
of Nutrient Manage	ment Plans for the application of n
the litter production	for the farm, estimates the P Inde
allocation of nutrier	its to the various receiving fields, a
worksheet is the re-	sult of an effort to develop a reliable
developed by a mu	lti-agency effort. However, no guar
improvement shoul	d be directed to Karl VanDevender
NRCS soils updat	e.

				7.			1 1865			Ann	ual Appl To	otals		1 - 1-1-
19.1									Dry			Liquid		V
Fields Shown		15						ton			1000 gal			Total
Total Annual		Field		Appl PI	Per Acre	Per Field	Appl PI	Per Per Appl PI		Per Acre	Per	Appl PI	Appl PI	
PI	N				Acre	rieiu		Acre	Field	S. C. A. 184	Acie	Field		
Value	Balance		(Column Shown Value)	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show	Show
value	(+/-)	(Column Default Value)					Table 1	100					
20	-22	H1									8.50	132.60	13	13
24	-22	H2					18.5			2.35	8.50	144.50	15	15
44	-22	Н3						92 59		Part of the	8.50	115.60	27	27
24	-22	H4									8.50	74.80	15	15
61	-106	H7					10/0	A STATE OF THE STA			12.00	891.60	37	37
34	-41	H8	Section 1					6. ·			16.00	248.00	26	26
54	-89	H9				a va list y		3 1			13.00	535.60	41	41
34	-41	H10					7 7				16.00	531.20	26	26
21	-22	H11						19			8.50	175.95	15	15
63	-73	H12									14.00	331.80	43	43
24	-154	H13									9.00	554.40	16	16
22	-154	H14								1	9.00	162.00	16	16
26	-22	H15									8.50	518.50	15	15
35	-22	H16					1.00				8.50	676.60	27	27
53	-41	H17				V 1000					16.00	1419.20	42	42

Farm Totals Available
Surpluses/Deficits (+/-)

Section D: Phosphorous Based Field List

Section D. Fields Targeted for Phosphorus Based Manure Management

Operator Name <u>C&H Hog Farms</u>	Date _	04/05/2018
--	--------	------------

Based on current soil test results, there are no fields at this time that are identified as having high and/or very high soil phosphorus (P) levels. Refer to the previous page, including Table 1, for manure management guidelines to avoid further or unnecessary phosphorus buildup. Other management options are also available for consideration.

Sprdsht.	Field ID <u>1/</u> (Tract & Field)	Lega	al Descri	ption	Acres	Soil Phosph	orus Test <u>2/</u>	Date
Line	(Tract & Field)	Section	Twp.	Range	Available	Mehlich 3 (PPM)		Tested
			-					
				-			-	
								 .
								_
		-						
	<u> </u>			_				
	 							
						 	<u> </u>	
						 	 	
						 		
				-				
								1
			<u> </u>					
							 -	
		_			<u></u>	 	ļ	
		·	-	<u>.</u>				
-								
	: -		-	ļ <u> </u>				
				 			 	
				 				
	-					-		
		-	<u> =</u>			-		
				 				
				 				
					<u>.</u> .			<u> </u>

¹/ Place an asterisk (*) next to fields not owned by operator.

^{2/} An increase or decrease in phosphorus levels should be monitored with future soil tests to determine any needed manure application rate adjustments.

Section E: Inventory of Water Wells

Inventory of Water Wells

Field	Location	Well Depth	Use of Well 1/	Required Setback Distance From Well For Manure Application (Ft.)			
ID	(Legal)	(Ft.)		Distance From Field	State Rule		
4	SW/4 of, Sec 25, T 15N, R 20 W	846	Private	NA			
10	SE/4 of, Sec 35 T 15 N, R 20 W	700	Private	NA	100		
14	SW/4, Sec 35, T 15 N, R 20 W	1035	Private	NA	100		
7	E 1/2, Sec 26, T 15 N, R 20 W	325	Private	1,200	100		
	E 1/2,	665					

1/ Well Use Categories:

- Producer (Owned)
- Private
- Public
- Irrigation

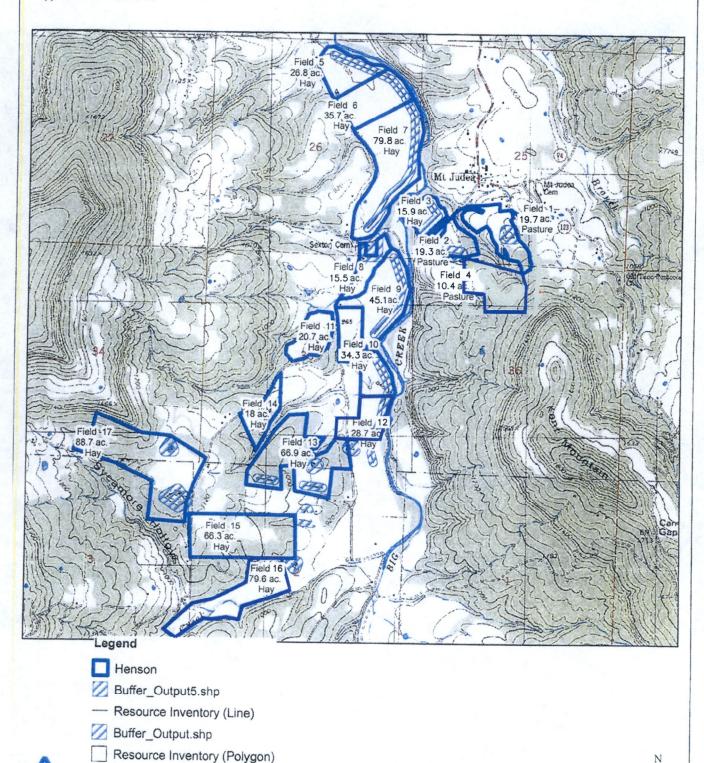
Section F: Land Treatment Information and Land Application Maps

· 一次人のないない、これのない、これには、これには、これのないのないは、これのないのないは、ないないには、これのないには、これのないには、これのないでは、これのないでは、これのないのでは、これのないのでは、これのないのでは、これのないでは、これのでは、こ

SECTION F. Land Treatment Information and Land Application Maps

The following Information is attached

- 1. Waste Utilization Summary Spreadsheet
- 2. Overall Site Map
- 3. WQRA Maps
- 4. Soil Survey Maps


C & H Hog Farms Newton County, AR

1 Waste	Utilization	Summa	ry Spreads	heet						
Field ID	Acreage	Setbacks	Useable		Quarter	Section	Township	Range	County	Owner of Land
Area			Acreage	Land					_	
	(Acres)	(Acres)	(Acres)	Use						
1	19.7	4.1	15.6	Grassland	SW 1/4	25	15N	20W	Newton	Jason Henson
2	19.3	2.3	17.0	Grassland	SW 1/4	25	15N	20W	Newton	Jason Henson
3	15.9	2.3	13.6	Grassland	SW 1/4	25	15N	20W	Newton	Charles Campbell
4	10.4	1.6	8.8	Grassland	NW 1/4	36	15N	20W	Newton	Jason Henson
5	24.9	1.2	23.8	Grassland	NE 1/4	26	15N	20W	Newton	Sean Crickets/Rickets
6	36.6	2.1	34.5	Grassland	NE1/4	26	15N	20W	Newton	William Rickets/Crickets
7	79.8	5.5	74.3	Grassland	E 1/2	26	15N	20W	Newton	E.G. Campbell
8	15.5	0.0	15.5	Grassland	NE 1/4	35	15N	20W	Newton	Charles Campbell
9	45.1	3.9	41.2	Grassland	NE 1/4	35	15N	20W	Newton	Charles Campbell
10	34.3	1.2	33.2	Grassland	NE 1/4	35	15N	20W	Newton	Billy Cheatham
11	20.7	0.0	20.7	Grassland	N 1/2	35	15N	20W	Newton	Billy Cheatham
12	28.7	5.1	23.7	Grassland	SE 1/4	35	15N	20W	Newton	Robby Flud
13	66.9	5.3	61.6	Grassland	S 1/2 & N 1/2	35&2	15N&14N	20W	Newton	Charles Campbell
14	18.0	0.0	18.0	Grassland	SW1/4	35	15N	20W	Newton	Charles Campbell
- 15	66.3	5.3	61.0	Grassland	NW 1/4	2	14N	20W	Newton	Clayel Criner
16	79.6	0.0	79.6	Grassland	All &SE 1/4	2&3	15N&14N	20W	Newton	Barbara Hefley
17	88.7	0.0	88.7	Grassland	NE 1/4&S 1/2	3&34	15N&14N	20W	Newton	Jason Criner
Total	670.4	39.7	630.7							

Topographic

Customer(s): JASON HENSON

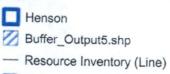
Approximate Acres: 685

1,250

2,500

3,750

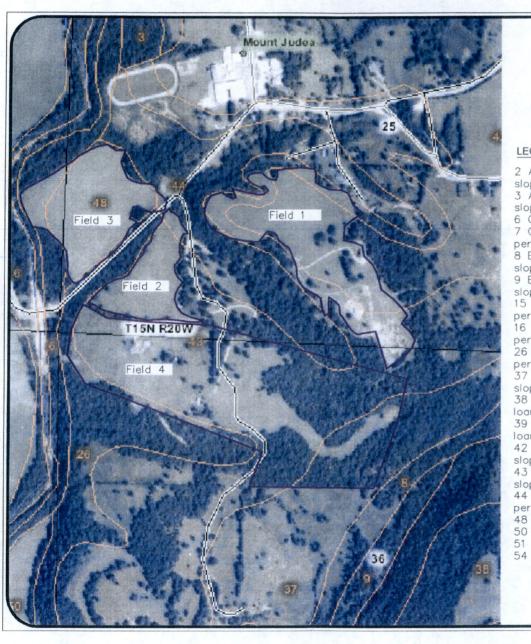
5,000


Resource Inventory (Line)

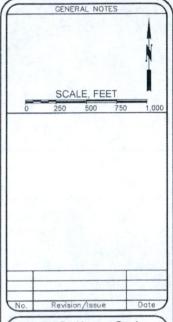
Conservation Map

Customer(s): JASON HENSON

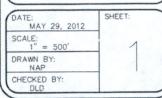
Approximate Acres: 685



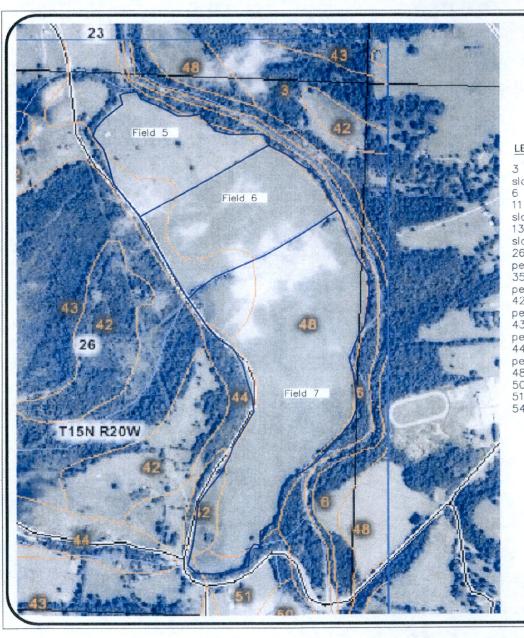
Buffer_Output.shp


Resource Inventory (Polygon)
Resource Inventory (Line)

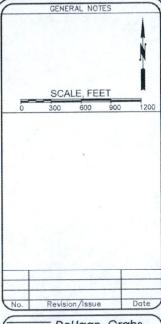
- 2 Arkana-Moko complex, 8 to 20 percent slopes
- 3 Arkana-Moko complex, 20 to 40 percent slopes
- 6 Ceda—Kenn complex, frequently flooded 7 Clarksville very cherty silt loam, 20 to 50 percent slopes
- 8 Eden-Newnata complex, 8 to 20 percent slopes
- 9 Eden-Newnata complex, 20 to 40 percent slopes
- 15 Enders—Leesburg stony loams, 8 to 20 percent slopes
- 16 Enders—Leesburg stony loams, 20 to 40 percent slopes
- 26 Moko-Rock outcrop complex, 15 to 50 percent slopes
- 37 Nella-Steprock complex, 8 to 20 percent slopes
- 38 Nella-Steprock-Mountainburg very stony loams, 20 to 40 percent slopes
- 39 Nella—Steprock—Mountainburg very stony loams, 40 to 60 percent slopes
- 42 Noark very cherty silt loam, 3 to 8 percent slopes
- 43 Noark very cherty silt loam, 8 to 20 percent slopes
- 44 Noark very cherty silt loam, 20 to 40 percent slopes
- 48 Razort loam, occasionally flooded
- 50 Spadra loam, occasionally flooded
- 51 Spadra loam, 2 to 5 percent slopes
- 54 Woter


DeHaan, Grabs & Associates, LLC Consulting Engineers

PO Box 522, Mandan, ND 58554 (701) 663-1116, FAX: (701) 667-1356 www.dgaengineering.com


C&H HOG FARMS
GESTATION-FARROWING FARM

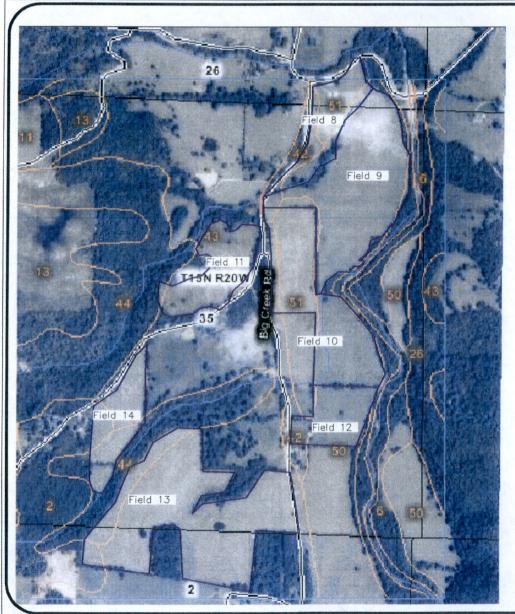
SECTION 25 AND 36, T 15 N, R 20 W NEWTON COUNTY, AR


FIELDS 1-4

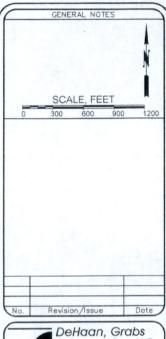
FILE NAME: OS PROJECT FILES/SWINE/HENSON/OFILES/PLAN

- 3 Arkana-Moko complex, 20 to 40 percent slopes
- 6 Ceda-Kenn complex, frequently flooded 11 Enders gravelly loam, 3 to 8 percent slopes
- 13 Enders stony loam, 3 to 20 percent slopes
- 26 Moko-Rock outcrop complex, 15 to 50 percent slopes
- 35 Nella-Enders stony loams, 8 to 20 percent slopes
- 42 Noark very cherty silt loam, 3 to 8 percent slopes
- 43 Noark very cherty silt loam, 8 to 20 percent slopes
- 44 Noark very cherty silt loam, 20 to 40 percent slopes
- 48 Razort loam, occasionally flooded
- 50 Spadra loam, occasionally flooded
- 51 Spadra loam, 2 to 5 percent slopes
- 54 Water

DeHaan, Grabs & Associates, LLC Consulting Engineers
PO Box 522, Mandan, ND 58554
(701) 663-1116, FAX: (701) 667-1356
www.dgaengineering.com


C&H HOG FARMS GESTATION-FARROWING FARM

> SECTION 26, T 15 N, R 20 W NEWTON COUNTY, AR

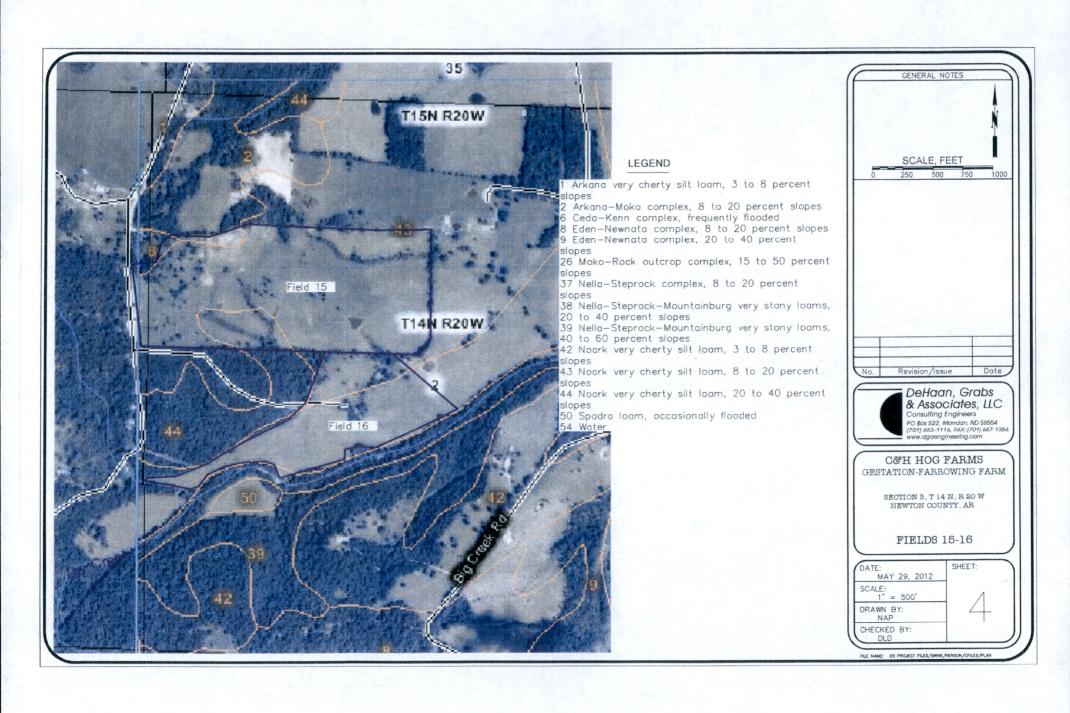

> > FIELDS 5-7

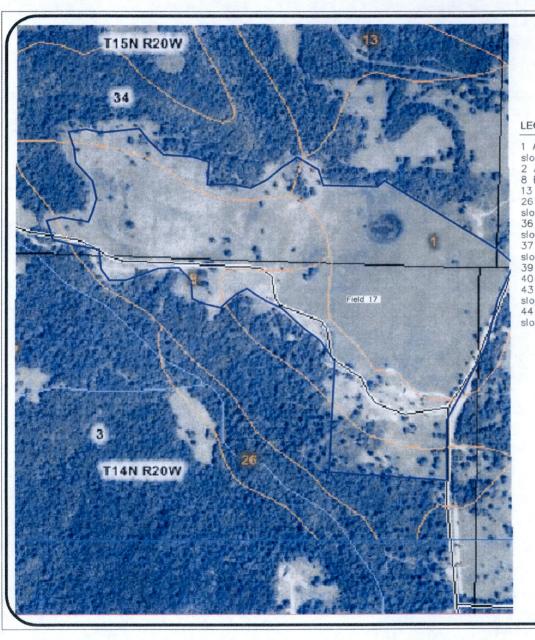
DATE: MAY 29, 2012	SHEET:
SCALE: 1" = 600'	
DRAWN BY: NAP	
CHECKED BY:	

FILE NAME: OS PROJECT FILES/SHINE/HENSON/OFRES/PLA

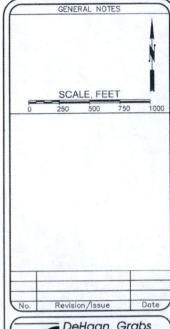
- 1 Arkana very cherty silt loam, 3 to 8 percent
- 2 Arkana-Moko complex, 8 to 20 percent slopes 6 Ceda-Kenn complex, frequently flooded
- 11 Enders gravelly loam, 3 to 8 percent slopes 13 Enders stony loam, 3 to 20 percent slopes
- 26 Moko-Rock outcrop complex, 15 to 50 percent slopes
- 35 Nella-Enders stony loams, 8 to 20 percent
- 37 Nella-Steprock complex, 8 to 20 percent
- 42 Noark very cherty silt loam, 3 to 8 percent
- 43 Noark very cherty silt loam, 8 to 20 percent
- 44 Noark very cherty silt loam, 20 to 40 percent
- 48 Razort loam, occasionally flooded
- 50 Spadra loam, occasionally flooded
- 51 Spadra loam, 2 to 5 percent slopes
- 54 Water

& Associates, LLC Consulting Engineers PO Box 522, Mandan, ND 58554 (701) 663-1116, FAX: (701) 667-1356 www.dgaengineering.com


C&H HOG FARMS GESTATION-FARROWING FARM


> SECTION 26, T 15 N, R 20 W NEWTON COUNTY, AR

> > FIELDS 8-15


DATE:	SHEET:
MAY 29, 2012	_
SCALE: 1" = 600'	_
DRAWN BY: NAP	
CHECKED BY:	

FILE NAME: OS PROJECT FILES/SWINE/HENSON/OFILES/PLAY

- 1 Arkana very cherty silt loam, 3 to 8 percent
- 2 Arkana—Moko complex, 8 to 20 percent slopes 8 Eden—Newnata complex, 8 to 20 percent slopes 13 Enders stony loam, 3 to 20 percent slopes 26 Moko-Rock outcrop complex, 15 to 50 percent
- 36 Nella-Enders stony loams, 20 to 40 percent
- 37 Nella-Steprock complex, 8 to 20 percent
- 39 Nella-Steprock-Mountainburg very stony loams, 40 to 60 percent slopes
- 43 Noark very cherty silt loam, 8 to 20 percent
- 44 Noark very cherty silt loam, 20 to 40 percent

DeHaan, Grabs

& Associates, LLC Consulting Engineers PO Box 522, Mandan, ND 58554 [701] 663-1116, FAX: [701] 667-1356 www.dgaengineering.com

C&H HOG FARMS GESTATION-FARROWING FARM

> SECTION 3, T 14 N, R 20 W NEWTON COUNTY, AR

> > FIELD 17

DATE:	SHEET:
MAY 29, 2012	
SCALE: 1" = 500'	
DRAWN BY: NAP	
CHECKED BY:	

FILE NAME: OS PROJECT FILES/SWINE/HENSON/CFILES/PLAN

Section G: Signed Manure Application Lease Agreements

SECTION G. SIGNED MANURE APPLICATION LEASE AGREEMENTS AND SETBACK REQUIREMENT WAIVER

- Signed Land Use Agreements are shown for Fields 1-17.
 Signed Setback Requirement Waiver

I, Jason Henson Name of Landowner				, agree to allow C+ H Hog Farms, Inc. Name of Permittee (matches application & AR So							
to la	nd apply _	liquid ar Pype of Wa	imal r	waste from _	Swine W	Facility uste Source or Ty	pe of Waste Facili	ty			
to	니다.니 Total Ac	reage Availabl	cres of my p	property located in New ton County. County of Application Site							
	Field ID	New/ Existing	Section	Township	Range	Latitude	Longitude	Available Acreage*			
	i	Gisting	25	15N	200	35,917	-93.058	15.6			
	a	Existina	<i>. 25</i>	15N	30W)	35,916	-93.062	17			
	4	Existing	<u>36 </u>	15N	90M)	35.914	-93.061	8,8			
							+				
acco Envi	rdance witi ronmental	h the manag Quality (AI	ement plan DEQ) as we	developed an	d submitted	I to the Arkan	ply liquid anim Type o sas Department et forth in the p also be satisfied	f Waste t of ermit issued			
apply	ying to my	property:									
field	listed in the		contract pr	ior to land ap				y ADEQ for each			
Perm	ilip Car	was e C		1-5-18 Date	To Lando	Son. 74en wner Signatu	Son_	<u>4-5-18</u> Date			

Land Use Contract									
I, <u>Charles Campbell</u> , agree to allow <u>C+H Hog Farms, Inc.</u> Name of Landowner Name of Permittee (matches application & AR SoS)									
Name of Landowner Name of Permittee (matches application & AR SoS)									
to lan	d annly i	نمية لازيما	onal i	waste from _	Shline	Parilitie			
W IMI	u uppry <u>i</u>	Type of Wa	aste	waste from _	W	aste Source or Tv	pe of Waste Facili	iv	
			y			3 .			
to								•	
	Total Ac	reage Availabl	le			County of Applic	ation Site		
-	Field	New/	Section	Township	Domes	Latitude	Longitude	Available	
	ID	Existing	Section	Townsinb	Range	Lantude	Longitude	Acreage*	
	<u></u> 3		25	15N	aow	35,918	-93,065	13.6	
	<u>8</u>	Existing	<u>නට</u> 85	15N	T			15.5	
1	9	Existing	······································	·	30W	35,916	-93.069	41.2	
		Existing	35	15N	dow	35.911	-93,068		
	13	Existing	35/2	15N/14N	30W	35:902	-93.076	101.6	
	14	Existing	35	15N	30W	35,905	-93.078	18.0	
	·	-	······	ļ	 				
	* A *i			<u> </u>	1	<u> </u>	1	[]	
	Avail	able acreage	is the total	acreage minu	is butter zo	one areas			•
7	•		nas aseria.		e a		ent and a day or		
1 am a	ilso awar	e that the lan	id applicato	r or the owner	r of the ope	eration is to ap	ply liquid anin		
							1 ype o	f Waste	
accord	dance wit	h the manao	rement plan	developed an	d submitte	d to the Arkan	sas Department	of	
			Arrange Tarrier	an i diopour an		to the same	ous D'opurinon		
Envir	onmental	Quality (AI	DEO) as we	ll as the requi	rements ar	d conditions s	et forth in the p	ermit issued	
		C						:	
by AI	DEO. In a	addition to th	hese guideli	ines, the follo	wing requi	rements must a	ilso be satisfied	when land	
~		, -		,					
annisi	ina ta mu	property:							
appry	ing to my	property.							
		······································	<u> </u>					<u> </u>	
								<u> </u>	-,
							•		
								•	
The k	andowner	agrees to p	provide or a	llow permitte	e to condu	ict soil analysi	s as required b	y ADEQ for	each
					oplication.	Additionally,	this approval r	nay be termi	nated
with y	vritten no	tice from th	e landowne	r.					
							ž.		
01	A: -	and I	1 11	-0-18	St	1 /1-	م م م	0 U-	9-18
11/	kip Ca	mbell	· <u> </u>	<u>-9-18</u>	<u> </u>	horled!	all Bure		4 U
Permi	Permittee's Signature Date Landowner Signature Date								

I, Billy Cheathain, agree to allow C+H Hog Farms, Inc. Name of Landowner Name of Perinitee (matches application & AR SoS)								
to lan	to land apply iquid animal waste from Swine facility Type of Waste Waste Source or Type of Waste Facility							
to	53.9 Total Ac	reage Availab	cres of my p	property locate		い <u>やい</u> County of Applie	County. ation Site	
	Field ID	New/ Existing	Section	Township	Range	Latitude	Longitude	Available Acreage*
	10	Existing Existing	35 35	15N 15N	30W 30W	35,910 35,910	-93,071 -93,074	33.2 20.7
*Available acreage is the total acreage minus buffer zone areas I am also aware that the land applicator or the owner of the operation is to apply liquid animal waste in Type of Waste accordance with the management plan developed and submitted to the Arkansas Department of Environmental Quality (ADEQ) as well as the requirements and conditions set forth in the permit issued by ADEQ. In addition to these guidelines, the following requirements must also be satisfied when land								
applying to my property:								
The landowner agrees to provide or allow permittee to conduct soil analysis as required by ADEQ for each field listed in this land use contract prior to land application. Additionally, this approval may be terminated								
	written no	tice from th	e landowne	r.	plication.	Additionally,	this approval i	nay be terminated
Perm	ittee's Sig	Cample nature	ell 1	1-9-18 Date	Ball Landi	Winer Signatu	re	<u>4-9-18</u> Date

I,	Robby	Flud ne of Candown	cr	_, agree to all		H Hog Far	ms Inc.	tion & AR SoS)
to land apply liquid animal waste from Swine facility Type of Waste Waste Source or Type of Waste Facility						ty		
to	33, 7 Total Ac	a creage Availab		property locat		lwtory County of Applic	_ County. ation Site	
	Field ID	New/ Existing	Section	Township	Range	Latitude	Longitude	Available Acreage*
	12	Existing	35	15N	aow	35,901	-93,069	23.7
				,				•
						·		
*Available acreage is the total acreage minus buffer zone areas I am also aware that the land applicator or the owner of the operation is to apply liquid animal waste in Type of Waste accordance with the management plan developed and submitted to the Arkansas Department of								
						•	et forth in the p	et :
appl	ying to my	property:		. •				· · · · · · · · · · · · · · · · · · ·
The landowner agrees to provide or allow permittee to conduct soil analysis as required by ADEQ for each field listed in this land use contract prior to land application. Additionally, this approval may be terminated with written notice from the landowner.								
Perm	ilip Cav nittee's Sig	nature	<i>Н</i>	1-9-18 Date	Lando	wner Signatur		<u> </u>

I, Barbara Hefley agree to allow C+H Hog Farms, Inc. Name of Landowner AR SoS)								
to lan	to land apply liquid animal waste from Swine facility Type of Waste Waste Source or Type of Waste Facility							
to 79.6 acres of my property located in Newton County. Total Acreage Available County of Application Site								
	Field ID	New/ Existing	Section	Township	Range	Latitude	Longitude	Available Acreage*
	16	Existing	2/3	14N	30W	35, 894	-93,074	79.6
		ő						
			-					
	*Available acreage is the total acreage minus buffer zone areas							
I am also aware that the land applicator or the owner of the operation is to apply liquid animal waste in								
Type of Waste accordance with the management plan developed and submitted to the Arkansas Department of								
		• •		-			et forth in the p	
by Al	DEQ. In a	ddition to t	hese guideli	nes, the follow	wing requir	ements must a	lso be satisfied	when land
apply	ing to my	property:						
			· · · · · · · · · · · · · · · · · · ·					
The landowner agrees to provide or allow permittee to conduct soil analysis as required by ADEQ for each field listed in this land use contract prior to land application. Additionally, this approval may be terminated								
with v	written no	tice from the	e landowner	r.	prication.	Additionally,	lins approval in	nay be terminated
Permi	ttee's Sig	ample	y 4-	9-1 8 Date	Lando	MANA wner Signatur	My	4-9-18 Date
	~ ~ *	~			ustil	or Digautti		, 244

LAND USE CONTRACT								
1, Ja	<u>acen</u>	Crine	, agree to	U wolla o	ason	Henson		
to land	apply wast	n Township Count	Hog Fal	CW 0	Oper peration local	ation Owner ted in the	1/4 of	
Section	<u> 26</u> i	n Township	2 Type of go	eration and Range	206	√ in 1/4 Si	ection	
Ne	Section V + O O County of Opera	Count	ty to 88	. 7ac	Ronge res of my pro	perty located	in	
	y of Application		Total Acre y. A descripti					
		re as follows:						
•								
Site	1/4						Available]
No.	Section	Section	Township	Range	Latitude	Longitude	Acreage	
111	NE	3	141	20W	35,901	-93,087	88.7	
and	SW	34	ISN	200				
and	SE	34	15 N	20W				
]
*Availabl	e acreage is t	he total acreage mi	nus buffer zone a	ır c as.	······································		······································	
* 1								
manager	o aware tna nent plan a	at the land appli and guidelines a	cator or the or nd conditions	wner of the o set forth by t	peration is to he Arkansas I	apply waste Department o	according to t f Environment	he tal
Quality.						,		
In addition	on to these (guidelines, the fo	ollowing requi	rements must	also be satisfi	ed when apply	ying waste to n	ny
land:			- •			, , ,		
		<u></u>		· · · · · · · · · · · · · · · · · · ·				····
u								
						***************************************	· · · · · · · · · · · · · · · · · · ·	
						•		***************************************
				1		Ċ		
	n He		3-71-12	//,	in C	1 10 B	3-21-	12
	on Owner:		Date	- 1/4	andowner Si	gnature	Date	

Attachment 1

Section Country	apply was n 26 Section County or Oper by of Application	te from his/her in Township Cour	Kett Sagree to Hoc, For Township Structure of Structure o	eration (and Rang	operation local e Range Range	ated in thein in operty located	1/4 of	4 ttach
Site No.	Section	Section 26	Township	Range 20W	Latitude	Longitude	Available Acreage	
					30, (%)	-(5,06-1	3770	
I am also nanagen Quality.	aware tha nent plan ar	t the land appli nd guidelines a	no conditions s	vner of the op set forth by th	e Arkansas I	Department of	according to the Environmental ing waste to my	
				D	#5 ():	<i> </i> ++	.5-19-1	

Site No. Section Section Township Range Latitude Longitude Acreage Site No. Section Section Township Range Latitude Longitude Acreage Site No. Section Section Township Range Latitude Longitude Acreage Available Acreage *Available acreage is the total acreage minus buffer zone areas.	
5 NE 26 ISN 20W 35,928 -93,071 23.8	1
*Available acreage is the total acreage minus buffer zone areas.	
*Available acreage is the total acreage minus buffer zone areas.	- }·
*Available acreage is the total acreage minus buffer zone areas.	-
I am also aware that the land applicator or the owner of the operation is to apply waste according to management plan and guidelines and conditions set forth by the Arkansas Department of Environme Quality. In addition to these guidelines, the following requirements must also be satisfied when applying waste to land:	ntal
Operation Owner Signature Date Landowner Signature Date	 - -/2

Attachment 1

			LAN	D USE CON	TRACT			
1, E	I. E. G. Campbell, agree to allow Jason Henson Landownel to land apply waste from his/her Hog Farm operation located in the 1/4 of Section 26 in Township 15 Type of Operation Section Section Township 15 Township 7 4.3 acres of my property located in Newton County of Operation Total Acreage Available County of Application Site County of Application Site County of Application Site							
to land	apply waste	e from his/her _	Hog Fai	uw ot	Open peration locat	ation Owner led in the	1/4 of	
Section	26 ii	1 Township	15 Type of Ope	and Range	201	√ in 1/4 Se	ction	
Ne.	Section Township 7 4 3							
1/16	County of Opera	tion	Total Acre	age Available	res of my pro	орену посатеа	ın	
County	of Application	Count	y. A descripti	on of the area	s to be used:	as land		
applicat	ion sites ar	e as follows:						
								•
Site	1/4						Available	
No.	Section	Section	Township	Range	Latitude	Longitude	Acreage	
7	NE	26	15 IV	20 W	35.422	-93,067	74.3	
and	SE							
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
*Availabl	e acreage is t	he total acreage mi	inus buffer zone a	reas.				
	Č							
I am als	o aware tha	at the land appl	icator or the o	wner of the o	neration is to	annly waste	according to	the
manager	ment plan a	and guidelines a	and conditions	set forth by the	he Arkansas	Department o	f Environme	ntal
Quality.								
In additi	on to these	guidelines, the f	ollowing requi	rements must	also be satisf	ied when apply	ying waste to	my
land:						• • • • • • • • • • • • • • • • • • • •		-
			***************************************		B	و د دو همود در سال مورد و در مورد و مورد	ومواهدوه ومداره والمناورة والمناور وميت مخسوم والمواهد	115 <del>Mariello (115 p. 115 p. 1</del>
			and have a maximum, but oping the second relative to the design where the				.,	
-,	······································	,		<del></del>				<del></del>
<u>-</u>					······································	·	**************************************	·.
			•					
				Ø	0.1	1	1 (	)
	on Hen		3-21-	12 6	¥./	CaMID	pell	3-21-12
Operati	ion Owner	Signature	Date	I	Landowner S	ignature //	Date	

			¥ A'NI	D TICE COX	ana y can		•	Attachment 1
I, Claye Ciner, agree to allow Jasan Henson  Landowner to land apply waste from his/her County of Operation  Section County of Operation  County of Operation  County of Application Site application Sites  A description of the areas to be used as land application sites are as follows:								
Site No.	¼ Section	Section	Township	Range	Latitude	Longitude	Available Acreage*	
15	NW	2	14N	20W	35.896	-93.078	61	
						72 10		
		· · · · · · · · · · · · · · · · · · ·						-
<b> </b>							<del></del>	-
*Availab	le acreage is t	he total acreage mi	and huffer our					
I am als manage Quality.	o aware the	at the land appli and guidelines a guidelines, the fo	icator or the o	wner of the o	he Arkansas	Department o	f Environme	ıtal
		·····						
		······						
								<del></del>
	on Hen ion Owner		3-21- Date		Jandowner S		center Date	3-21-12

# **Setback Requirement Waiver**

, <u>Zelmer Campbell</u> , do hereby give consent to C & H Hog Farms, Inc.					
to apply wastewater and manure adjacent to	my property line and neighboring occupied				
buildings. I understand this allows C & H Hog	Farms to apply wastewater and manure within 50				
feet of my property line and within 500 feet of	f neighboring occupied buildings.				
	<u>.</u>				
Delones Comple	ll 2-18-16				
Landowner Signature	Date				
Jason Henson	2-18-16				
C & H Hog Farms, Inc. Representative	Date				

1, <u>Darlene Kent</u> , do he	reby give consent to C & H Hog Farms, Inc.
to apply wastewater and manure adjacent to my pr	operty line and neighboring occupied
buildings. I understand this allows C & H Hog Farm	s to apply wastewater and manure within 50
feet of my property line and within 500 feet of neig	hboring occupied buildings.
·	
Varlan Lent	2/18/16
Landowner Signature	Date
•	
Jason Henson	2-18-16
C & H Hog Farms, Inc. Representative	Date

I, Tames C. Campbell , do hereby give consent to C & H Hog Farms, Inc. to apply wastewater next to my property line.

Landowner Signature Carry Lell

7-21-14 Date

Jason Henson C&H Hog Farms, Inc. Representative 7-21-14 Date

Field 14

1, Bob Free	man	, do hereby giv	ve consent to C & H H	og Farms, Inc.
to apply wastewater and r			'	
buildings. I understand th	is allows C & H I	log Farms to app	oly wastewater and m	anure within 50
feet of my property line a	nd within 500 fe	et of neighboring	occupied buildings.	
	,			
Bob Fr	eeman		3-22	1 4
Landowner Signature			Ďatê	
			e .	
•				
Jason Hensin			3-22-19	4
C & H Hog Farms, Inc. Rep	resentative		Date	

	, do hereby give consent to C & H Hog Farms, Inc.
to apply wastewater and manure adjacent	to my property line and neighboring occupied
buildings. I understand this allows C & H F	log Farms to apply wastewater and manure within 50
feet of my property line and within 500 fee	et of neighboring occupied buildings.
•	
	5-4-15
Landowner Signature	Date
	·
Jason Henson	5-4-15
C & H Hog Farms, Inc. Representative	Date

1, DON T. ROCKWELL	, do hereby give consent to C & H Hog Farms, inc.
to apply wastewater and manure adjacent	to my property line and neighboring occupied
buildings. I understand this allows C & H I	log Farms to apply wastewater and manure within 50
feet of my property line and within 500 fe	et of neighboring occupied buildings.
Rochell.	3-26-14
Landowner Signature	Date
	· · · · · · · · · · · · · · · · · · ·
Jason Henson	3-26-14
C & H Hog Farms, Inc. Representative	Date

1, Brad Anderson, do hereby give consent to C & H Hog Farms, Inc. to apply wastewater next to
my property line.

C & H Hog Farms, Inc. Representative

<u>1-24-15</u> Date Section H: Soil Test Reports

# SECTION H. SOIL TESTS REPORTS

Land application soil tests for nutrient application are attached. Prior to application the results will be recorded in the analysis sheets.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	JH 1
Acres:	18
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179042
Sample Number:	3464449

#### 1. Nutrient Availability Index

Nutrient	🦠 🦠 Çond	centration 💢 🐈	Söil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	87	174	Above Optimum
К	244	488	Above Optimum
Ca	1390	2780	
Mg	134	268	
SO4-S	14	28	
Zn	8.2	16.4	
Fe	131	262	
Mn	195	390	<u></u>
Cu	1.7	3.4	
В	0.7	1.4	
NO3-N	11	22	

#### Soil Properties

2. 3011 F10p	Citics					
	Property		Vâ	ilue	Units	
Soil pH (1:2 so	il-water)		6	5.5		
Soil EC (1:2 so	il-water)				umhos/cr	n
Soil Estimated	CEC		11	.31	cmolc/kg	
Organic Matter	(Loss on Ignition	n)			%	
Estimated Soil Texture			Silt Loam			
	Estimat	ed Base	Saturation	on (%)		
Total	Ca	Μį	9	K	Na	
77.89	61.48	9.8	8	5.53	1.00	-

## 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	@rop	Ν	P2O5	K20	S04-S	Zn	В	Lime
Last Crop	Pasture (212)			<b>-</b>	Ib/acre -			
1 '	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	0
Crop 2	Warm-Season Grasses (MNT) (207)	60	0	0	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID:	8706881318
VENDOR	AR	72683
Date Processed:	12/1/2	017
Field ID:	JH 2	
Acres:	9	
Lime Applied in the last 4 years:	No	·
Leveled in past 4 years:	No	
Irrigation:	Unkno	wn
County:	Pope	
Lab Number:	17904	3
Sample Number:	34644	50

#### 1. Nutrient Availability Index

Nutrient	Nutrient Concentration		Soil Test Level
ř,	ppm	lb/acre	(Mehlich 3)
Р	104	208	Above Optimum
К	215	430	Above Optimum
Ca	883	1766	
Mg	113	226	
SO4-S	16	32	
Zn	7.1	14.2	
Fe	134	268	
Mn	242	484	
Cu	1.6	3.2	470
В	0.5	1	
NO3-N	8	16	

2. Soil Properties

Strate	Property	2	Value	Units	
1. A	the second				
Soil pH (1:2 so	il-water)		6.1		
Soil EC (1:2 so	il-water)			umhos/cm	
Soil Estimated	CEC		9.01	cmolc/kg	
Organic Matter	Organic Matter (Loss on Ignition)			%	
Estimated Soil	Texture		Silt Loam		
· · · · · · · · · · · · · · · · · · ·					
	Estimate	ed Base	Saturation (%)		
Total	Ca	M	g K	Na	
66.71	48.99	10.	45 6.12	2 1.16	

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	(Crop	N	P2O5	K20.	S04-S	z Zn	В	Lime
Last Crop	Pasture (212)				Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	0
Crop 2	Warm-Season Grasses (MNT) (207)	60	0	0	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318		
VENDOR	AR 72683		
Date Processed:	12/1/2017		
Field ID:	CC 3		
Acres:	17 .		
Lime Applied in the last 4 years:	No		
Leveled in past 4 years:	No		
Irrigation:	Unknown		
County:	Pope		
Lab Number:	179044		
Sample Number:	3464451		

#### 1. Nutrient Availability Index

Nutrient	Cond	centration	Soil Test Level (Mehlich 3)
	ppm lb/acre		(Mehlich 3)
Р	118	236	Above Optimum
K	92	184	Medium
Ca	1734	3468	<del></del>
Mg	99	198	
SO4-S	11	22	
Zn	7.1	14.2	
Fe	215	430	
Mn	207	414	
Cu	2.3	4.6	
В	0.7	1.4	
NO3-N	10	20	

#### 2. Soil Properties

Soil pH (1:2 soil	Property il-water)			/alue 6.5	Ui	nits
Soil EC (1:2 so	il-water)				umh	nos/cm
Soil Estimated	CEC		,	12.84	cmo	olc/kg
Organic Matter	(Loss on Ignition	٦)				%
Estimated Soil	Silt Loam - Silty Clay Loam					
				-	,	-
					_	
	Estimate	ed Base	Satura	tion (%)		
Total	Ca	Mg		K		Na
76.63	67.53	6.4	6.43 1.84			0.85

## 3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	.В.	Lime
Last Crop   Pasture (212)								
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	. 0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.

If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID:	8706881318
VENDOR	AR 7	2683
Date Processed:	12/1/20	17
Field ID:	JH 4	
Acres:	11	
Lime Applied in the last 4 years:	No	
Leveled in past 4 years:	No	
Irrigation:	Unknov	vn
County:	Pope	
Lab Number:	179045	
Sample Number:	346445	2

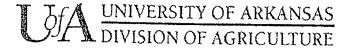
#### 1. Nutrient Availability Index

Nutrient	Con	entration	Soil Test Level
	ppm.	lb/acre	Soil Test Level (Mehlich 3)
.P	109	218	Above Optimum
K	161	322	Optimum
Ca	1230	2460	
Mg	165	330	
SO4-S	19	38	
Zn	9.1	18.2	
Fe	268	536	
Mn	70	140	
Cu	1.5	3	
В	0.6	1.2	~ <u>~</u>
NO3-N	13	26	

#### 2. Soil Properties

2. 0011 10p	0/1100					
	Property		Value		Units	
Soil pH (1:2 so	,		5.6	-		
Soil EC (1:2 so	il-water)				umhos/cm	
Soil Estimated	CEC		12.53	_	cmolc/kg	
Organic Matter	n)			%		
Estimated Soil	Texture		Silt Loam - Silty Clay Loam			
	Estima	ted Base	Saturation (	%).		
Total	Ca	M	g K		Na	
64.10	49.07	10.9	97 3.29		0.76	
			•		<u> </u>	

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)


	Crop	N	P2O5	K20	S04-S	Zn	В	Lime
Last Crop	Pasture (212)				- Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	40	0	0	0	4000
Crop 2	Warm-Season Grasses (MNT) (207)	60	0	0	0	0	0	4000
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.



# Cooperative Extension Service Soil Analysis Report Soil Testing And Research Laboratory Marianna, AR 72360

http://www.uark.edu/depts/soiltest

The University of Arkansas is an equal opportunity/affirmative action institution

JASON HENSON	Client ID;	8706881318
HC 72 BOX 10		
MTN JUDEA	AR	72655
Date Processed:	2/17/2012	
Field ID:	5	
Acres	40	
Lime Applied in the last 4 years:	No	
Leveled in past 4 years:	No	
Irrigation:	Unknown	
County:	Pope	
Lab Number:	36726	
Sample Number:	931078	

## 1. Nutrient Availability Index

Nutrient	Conce	ntration	Soil Test Level
Nutren	ppm	lb/acre	(Mehlich 3)
P	65	130	Above Optimum
К	108	216	Medium
Ca	2507	5014	
Mg	118	236	
SO4-S	12	24	
Zn	6.1	12.2	
Fe	134	268	
Mn	128	256	**
Cu	1.7	3.4	
В	0.0	0.0	
NO3-N	15	30	

#### 2. Soil Properties

Property	Value	Units
Soil pH (1:2 soil-water)	6.7	
Soil EC (1:2 soil-water)		umhos/cm
Soil ECEC	17	cmolc/kg
Organic Matter (Loss on Ignition)		%
Estimated Soil Texture	Silty Clay Loar	n - Clay Loam

	Estimat	ed Base Saturat	ion (%):	
Total	Ca	Mg	К	Na
82.2	74,4	5.8	1.6	0.3

# 3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N.	P205	K20 =	S04S	Zn	B	Lime
Last Crop	Pasture (207)	1			- lb/acre -			4 constitutions and
	Warm-Season Grasses (MNT) (207)	60	0	60	0	0	0	0
	Warm-Season Grasses (MNT) (207)	60	0	60	0	0	0	0
Crop 3							1	

#### 4. Crop 1 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, toporess an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1. If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.

#### 5. Crop 2 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1. If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.



## Cooperative Extension Service Soil Analysis Report Soil Testing And Research Laboratory Marianna, AR 72360

http://www.uark.edu/depts/soiltest

The University of Arkansas is an equal opportunity/alfirmative action institution

JASON HENSON HC 72 BOX 10 MTN JUDEA	Client iD:	8706881318 72655
Date Processed:	2/17/2012	· · · · · · · · · · · · · · · · · · ·
Field ID:	6	
Acres	40	
Lime Applied in the last 4 years:	No	
Leveled in past 4 years:	No	
Irrigation:	Unknown	
County:	Pope	
Lab Number:	36727	
Sample Number:	931079	

#### 1. Nutrient Availability Index

Nutrient		ntration	Soil Test Level
Nutrent	ppm	lb/acre	(Mehlich 3)
Р	76	152	Above Optimum
К	136	272	Optimum
Са	876	1752	
Mg	59	118	
S04-S	13	26	
Zn	2.1	4.2	
Fe	128	256	
Mn	188	376	
Cu	0.5	1.0	
В	0.0	0.0	~-
NO3-N	15	30	

#### 2. Soil Properties

and the second control of the second control		
Soil pH (1:2 soil-water)	6.2	
Soil EC (1:2 soil-water)		umhos/cm
Soil ECEC	8	cmolc/kg
Organic Matter (Loss on Ignition)		%
Estimated Soil Texture	Silt	Loam

	Estima	ted Base Saturat	ion (%)	
Total	Ca	Mg	К	Na
67,8	56.4	6.3	4.5	0.6

#### 3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	\$048	Zn	В	Lime
	Pasture (207)							
	Warm-Season Grasses (MNT) (207)	60	0	0	0	0	0	0
Crop 2	Warm-Season Grasses (MNT) (207)	60	0	. 0	0	0	0	0
Crop 3						l	L	

#### 4. Crop 1 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.

#### 5. Crop 2 Notes:

Apply the recommended rates of N, P, and K, in spring when night temperatures are > 60 degrees F for 1 week. For higher production, topdress an additional 60 lb N/Acre after every 4 to 6 weeks of grazing. For fall grazing apply 50 lb N/Acre in early August. Do not apply N after September 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	7
Acres:	70
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179046
Sample Number:	3464453

#### 1. Nutrient Availability Index

Nutrient	Conc	centration	Soil Test Level (Mehlich 3)
	🌲 ppm 🛴	lb/acre	(Mehlich 3)
Р	165	330	Above Optimum
К	73	146	Low
Ca	953	1906	
Mg	112	224	
SO4-S	15	30	
Zn	10	20	
Fe	205	410	
Mn	187	374	
Cu	2.8	5.6	
В	0.5	1	
NO3-N	8	16	

#### 2. Soil Properties

2. 0011 10p					
4.3.4.4	k A i i a i		, , ,	/alue	Units
Soil pH (1:2 so	il-water)			5.7	
Soil EC (1:2 so	il-water)				umhos/cm
Soil Estimated	CEC		•	10.00	cmolc/kg
Organic Matter	(Loss on Ignition	1)			%
Estimated Soil	Texture			Silt L	oam
	Estimate	ed Base	Satura	tion (%)	
Total	Ca	M	g	K	Na
60.01	47.64	9.3	13	1.87	1.17

#### 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Сгор	N.	P205	K20	SO4-S	Zn	В	Lime
Last Crop	Hay (144)				Ib/acre -			
Crop 1	Mixed Cool and Warm Season Grasses 4 ton (144)	160	0	220	0	0	0	4000
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	300	0	0	0	4000
Сгор 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply fertilizer in split applications in late winter and after spring hay harvest. To favor warm-season grasses, do not apply N until May 1. Split apply the recommended fertilizer rates after each subsequent hay harvest.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318			
VENDOR	AR 72683			
Date Processed:	12/1/2017			
Field ID:	7 PT 1			
Acres:	35			
Lime Applied in the last 4 years:	No			
Leveled in past 4 years:	No ·			
Irrigation:	Unknown			
County:	Pope			
Lab Number:	179047			
Sample Number:	3464454			

#### 1. Nutrient Availability Index

Nutrient	2 78 sec 1	entration 🦠 🦠	Soil Test Level
	- ppm	lb/acre 🎉	(Mehlich 3)
Р	157	314	Above Optimum
K	70	140	Low
Ca	957	1914	
Mg	110	220	
SO4-S	14	28	
Zn	9.5	19	
Fe	200	400	
Mn	174	348	
Cu	2.9	5.8	
B.	0.5	1	
NO3-N	7	. 14	

#### Soil Properties

z. Con rop	Ci acs						
	Property		Value	Units			
Soil pH (1:2 so	il-water)		5.7				
Soil EC (1:2 so	il-water)			umhos/cm			
Soil Estimated	CEC		10.00	cmolc/kg			
Organic Matter	(Loss on Ignition	on)		%			
Estimated Soil Texture			Silt Loam				
	Estima	ted Base	Saturation (%)				
Total	Ca	Mg	j K	Na			
59.99	47.86	9.1	7 1.80	1.17			

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

		•			- 0			
	Crop	N	P2O5	K2O -	SO4-S	Zn 💉	В	Lime
Last Crop	Hay (144)				Ib/acre -			
Crop 1	Mixed Cool and Warm Season Grasses 4 ton (144)	160	0	220	0	0	0	4000
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	300	0	0	0	4000
Crop 3	Reg 5 - Analysis Only (21)		_					

4. Crop 1 Notes:

To favor cool-season grasses, apply fertilizer in split applications in late winter and after spring hay harvest. To favor warm-season grasses, do not apply N until May 1. Split apply the recommended fertilizer rates after each subsequent hay harvest.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318				
VENDOR	AR 72683				
Date Processed:	12/1/2017				
Field ID:	7 PT 2				
Acres:	35				
Lime Applied in the last 4 years:	No				
Leveled in past 4 years:	No				
Irrigation:	Unknown				
County:	Pope				
Lab Number:	179048				
Sample Number:	3464455				

#### 1. Nutrient Availability Index

Nutrient	Con	centration	Soil Test Level (Mehlich 3)
	ppm	lb/acre	(Mehlich 3)
Р	165	330	Above Optimum
К	72	144	Low
Ca	995	1990	
Mg	111	222	
SO4-S	14	28	
Zn	9.2	18.4	
Fe	203	406	
Mn	183	366	
Cu	2.8	5.6	
В	0.5	1	
NO3-N	10	20	

#### 2. Soil Properties

	Property		Value		Units		
Soil pH (1:2 so	il-water)	-,	5.8	ľ			
Soil EC (1:2 so	il-water)				umhos/cm		
Soil Estimated	CEC		10.21		cmolc/kg		
Organic Matter	(חכ	%					
Estimated Soil Texture			Silt Loam				
_							
	Estima	ted Base	Saturation (	6)			
Total	Ca	M	g	K	Na		
60.83	48.72	9.0	06 1.81		1.23		

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	S04-S	Zn	В	Lime
Last Crop Hay (144)		lb/acre						
Crop 1	Mixed Cool and Warm Season Grasses 4 ton (144)	160	0	220	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	300	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply fertilizer in split applications in late winter and after spring hay harvest. To favor warm-season grasses, do not apply N until May 1. Split apply the recommended fertilizer rates after each subsequent hay harvest.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318			
VENDOR	AR 72683			
Date Processed:	12/1/2017			
Field ID:	CC 8			
Acres:	14			
Lime Applied in the last 4 years:	No			
Leveled in past 4 years:	No			
Irrigation:	Unknown			
County:	Pope			
Lab Number:	179049			
Sample Number:	3464456			

#### 1. Nutrient Availability Index

Nutrient	Conc	entration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	101	202	Above Optimum
К	84	168	Low
Ca	1977	3954	
Mg	92	184	
SO4-S	13	26	
Zn	6.3	12.6	
Fe	162	324	
Mn	182	364	
Cu	1.6	3.2	
В	0.7	1.4	
NO3-N	9	18	

#### 2. Soil Properties

	Property *		Value	Units			
Soil pH (1:2 soi	I-water)		6.7				
Soil EC (1:2 so	il-water)			umhos/cm			
Soil Estimated	CEC		13.98	cmolc/kg			
Organic Matter	(Loss on Ignition	on)		%			
Estimated Soil Texture			Silt Loam - Silty Clay Loam				
	Estima	ted Base S	aturation (%)				
Total	Ca	Mg	K	Na			
78.54	70.71	5.48	1.54	0.81			

#### 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	* N *	P2O5	K20	S04-S	Zn	, B	Lime	
Last Crop Pasture (212)			lb/acre						
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)		0	100	0	0	0	0	
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)		0	300	0	0	0	Ó	
Crop 3 Reg 5 - Analysis Only (21)									

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	CC 9
Acres:	30
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179050
Sample Number:	3464457

#### 1. Nutrient Availability Index

Nütrient		centration	Soil Test Level (Mehlich 3)
	ppm	lb/acre	(Mehlich 3)
Р	101	202	Above Optimum
K	106	212	Medium
Са	2395	4790	
Mg	97	194	
SO4-S	10	20	
Zn	6.1	12.2	
Fe	197	394	
Mn	127	254	
Cu	2.4	4.8	
В	0.7	1.4	
NO3-N	5	10	<u></u>

#### 2. Soil Properties

S 70, 10				
	Property		Value	Units
Soil pH (1:2 soi	l-water)		6.9	
Soil EC (1:2 so	il-water)	-		umhos/cm
Soil Estimated	CEC		15.67	cmolc/kg
Organic Matter	(Loss on Ignitio	n)		%
Estimated Soil	Texture		ilty Clay Loan	n - Clay Loam
	Estimat	ed Base Satur	ation (%)	
Total	· Ca	Mg	K	Na
84.05	76.41	5.16	0.75	

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	<b>B</b> *	Lime
Last Crop	Pasture (212)				lb/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.

If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	CC 9A
Acres:	12
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179051
Sample Number:	3464458

#### 1. Nutrient Availability Index

Nutrient	Cond	entration	Soil Test Level (Mehlich 3)
	ppm	lb/acre	(Mehlich 3)
Р	66	132	Above Optimum
К	98	196	Medium
Ca.	1938	3876	. <del></del>
Mg	89	178	
SO4-S	. 10	20	
Zn	4.3	8.6	
Fe	150	300	
Mn	115	230	
Cu	1.8	3.6	
В	0.6	1.2	
NO3-N	10	20	

#### Soil Properties

z. Suiriupi	ฮเนษร					
	Property			/alue	Uni	ts
Soil pH (1:2 soi	l-water)			6.5		
Soil EC (1:2 so	l-water)				umho	s/cm
Soil Estimated	CEC			13.78	cmol	c/kg
Organic Matter	(Loss on Ignition	ገ)			%	)
Estimated Soil	Texture		S	ilt Loam - Si	ity Clay Loa	am
	Estimate	ed Base	Satura	tion (%)		
Total	Ca	М	g	K		Na
78.23	70.30	5.3	38	1.82	0	.73
					<b>i</b>	

3. Recom	mendations (Notice: State and/or federal nutrient mana	agement regu	ulations may	y supersede	these agr	onomic rec	ommendatio	ns.)
	Crop	N	P2O5	K20	SO4-S	*. Zn	В	Lime
Last Crop	Pasture (212)				- lb/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	. 0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)				-			

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1. If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318			
VENDOR	AR 72683			
Date Processed:	12/1/2017			
Field ID:	CC9 YE			
Acres:	35			
Lime Applied in the last 4 years:	No			
Leveled in past 4 years:	No			
Irrigation:	Unknown			
County:	Pope			
Lab Number:	179052			
Sample Number:	3464459			

#### 1. Nutrient Availability Index

Nutrient		centration	Soil Test Level (Mehlich 3)
	ppm	Ib/acre	(Mehlich 3)
Р	89	178	Above Optimum
K	112	224	Medium
Са	2410	4820	
Mg	97	194	
SO4-S	11	22	
Zn	5.3	10.6	
Fe	183	366	
Mn	120	240	
Cu	2.2	4.4	
В	0.7	1.4	
NO3-N	7	14	

#### 2. Soil Properties

2. 00n / 10p	0,1,00					
	Property		,	Value .		Units
Soil pH (1:2 soi	il-water)			6.9		
Soil EC (1:2 so	il-water)					umhos/cm
Soil Estimated	CEC			15.79		cmolc/kg
Organic Matter	(Loss on Ignition	n)				%
Estimated Soil	Texture		Si	Ity Clay	Loam -	Clay Loam
	Estimat	ed Base	Satura	tion (%	)	
Total	Ca	М	g		K	Na
84.17	76.32	5.	12	1.	82	0.91
					-	

### 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				- Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)					İ		1.

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.

If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	F D 10
Acres:	15
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179054
Sample Number:	3464460

#### 1. Nutrient Availability Index

Nutrient	Con	centration	Soil Test Level
The second	ু ppm	lb/acre	(Mehlich 3)
Р	61	122	Above Optimum
K	92	184	Medium
Ca	1264	2528	
Mg	120	240	
SO4-S	13	26	
Zn	5.4	10.8	-
Fe	270	540	
Mn	118	236	
Cu	1.8	3.6	
В	0.4	0.8	
NO3-N	7	14	

#### 2. Soil Properties

	Property		Value	Units
Soil pH (1:2 soi	il-water)		5.5	
Soil EC (1:2 so	il-water)			umhos/cm
Soil Estimated	CEC	1	13.18	cmolc/kg
Organic Matter	(Loss on Ignition	n)		%
Estimated Soil	Texture	;	Silt Loam - Silty	Clay Loam
	Estimat	ed Base Satur	ation (%)	
Total	Ca	Mg	K	Na
			1.79	0.92

## 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Grop	N	P2O5	K2O	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				- Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	4000
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	4000
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	BC 10A
Acres:	18
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179055
Sample Number:	3464461

### 1. Nutrient Availability Index

Nutrient	Con	centration 🔏	Soil Test Level
**	ppm	lb/acre	(Mehlich 3)
Р	102	204	Above Optimum
K	123	246	Medium
Ca	1300	2600	
Mg	128	256	
SO4-S	14	28	
Zn	7.6	15.2	_
Fe	199	398	
Mn	166	332	
Cu	1.8	3.6	
В	0.4	0.8	
NO3-N	7	14	

#### 2. Soil Properties

z. Suil Flup	<del>UU</del> U			
	Property		Value	Units
Soil pH (1:2 soi	l-water)		5.9	
Soil EC (1:2 so	il-water)		<del>-</del>	umhos/cm
Soil Estimated	CEC		11.50	cmolc/kg
Organic Matter	(Loss on Ignition	on)		%
Estimated Soil	Texture		Silt Loam - S	Silty Clay Loam
			· · · · ·	
	Estima	ted Base	Saturation (%)	
Total	Ca	Mg	K	Na
69.56	56.52	9.28	3 2.74	1.02

3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Grop:	N	P2O5	K20	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID	: 8706881318	
VENDOR	AR	72683	
Date Processed:	12/1	/2017	
Field ID:	10 Y	Œ	
Acres:	29		
Lime Applied in the last 4 years:	No		
Leveled in past 4 years:	No		
Irrigation:	Unknown		
County:	Pop	e	
Lab Number:	179	056	
Sample Number:	3464462		

#### 1. Nutrient Availability Index

Nutrient	Con	centration.	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	100	200	Above Optimum
К	129	258	Medium
Ca	1287	2574	
Mg	129	258	
SO4-S	15	30	
Zn	7	14	
Fe	234	468	
Mn	154	308	
Cu	1.9	3.8	
B	0.4	0.8	
NO3-N	7	14	

#### 2. Soil Properties

2. 00n i iop	0,00							
	Property		`	Value		U	nits	7. 36
Soil pH (1:2 so	il-water)			5.9				
Soil EC (1:2 so	il-water)					um	hos/cm	
Soil Estimated	CEC			11.47		cm	olc/kg	
Organic Matter	(Loss on Ignition	n)		_			%	
Estimated Soil	Texture	-	S	ilt Loa	m - Silt	y Clay L	.oam	
	Estimato	ed Base	Satura	tion (%	6)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total	Ca	M	g		K		Na	
69.48	56.12	9.3	37	2	2.88		1.10	$\neg$

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N'	P2O5	K2O	SO4-S	Zń	В	Lime
Last Crop	Pasture (212)				Ib/acre -			
	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)		<u> </u>					

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	FD 11
Acres:	19
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179057
Sample Number:	3464463

#### 1. Nutrient Availability Index

Nutrient	Cond	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	65	130	Above Optimum
К	195	390	Above Optimum
Ca	732	1464	
Mg	143	286	
SO4-S	17	34	
Zn	5.5	11	
Fe	173	346	
Mn	163	326	
Cu	1	2	
В	0.4	0.8	
NO3-N	11	22	

#### 2. Soil Properties

F	roperty		Value	Units
Soil pH (1:2 soil	-water)		5.7	
Soil EC (1:2 soi	l-water)			umhos/cm
Soil Estimated (	CEC		9.43	cmolc/kg
Organic Matter	(Loss on Ignitio	n)		%
Estimated Soil	Texture		Silt La	oam
	Estimat	ed Base Sat	uration (%)	
Total	Ca	Mg	K	Na
57.56	38.83	12.64	5.30	0.78

## 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				Ib/acre -			*******
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	4000
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	0	Ö	0	0	4000
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed: Field ID: Acres: Lime Applied in the last 4 years: Leveled in past 4 years: Irrigation:	12/1/2017 RF 12 13 No No Unknown
County: Lab Number: Sample Number:	Pope 179058 3464464

#### 1. Nutrient Availability Index

Nutrient	Conc	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	138	276	Above Optimum
K	193	386	Above Optimum
Са	1424	2848	
Mg	136	272	~-
SO4-S	18	36	
Zn	6.6	13.2	
Fe	224	448	
Mn	166	332	
Cu	2	4	
В	0.5	1	
NO3-N	17	34	

#### 2. Soil Properties

			Value	Units
Soil pH (1:2 soil-v	vater)		5.8	
Soil EC (1:2 soil-v	vater)			umhos/cm
Soil Estimated CE	EC		13.37	cmolc/kg
Organic Matter (L	oss on Igniti	on)		%
Estimated Soil Te	xture		Silt Loam - Si	ilty Clay Loam
	Estima	ted Base Sa	ituration (%)	
Total	Ca	Mg	K	Na
66.35	53.24	8.47	3.70	0.94

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	<u>Crop</u>	N.	P2O5	K20	SO4-S	Zn:	В	Lime
Last Crop	Pasture (212)	T			- Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	Ō
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	0	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)						-	-

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318			
VENDOR	AR 72683			
Date Processed:	12/1/2017			
Field ID:	CC 13			
Acres:	13			
Lime Applied in the last 4 years:	No			
Leveled in past 4 years:	No			
Irrigation:	Unknown			
County:	Pope			
Lab Number:	179059			
Sample Number:	3464465			

#### 1. Nutrient Availability Index

Nutrient	Cond	entration	Soil Test Level
	. ppm 🥼	lb/acre	(Mehlich 3)
Р	94	188	Above Optimum
K	170	340	Optimum
Ca	1824	3648	
Mg	140	280	
SO4-S	15	30	
Zn	9.9	19.8	
Fe	124	248	
Mn	327	654	
Cu	1.9	3.8	
В	0.5	1	
NO3-N	12	24	

#### Soil Properties

	pernes			
	Property		Value	Units
Soil pH (1:2 s	oil-water)		6.4	
Soil EC (1:2 s	soil-water)			umhos/cm
Soil Estimate	d CEC		14.31	cmolc/kg
Organic Matte	er (Loss on Ignitio	on)		%
Estimated So	il Texture		Silt Loam - Silt	y Clay Loam
			•	
-				
	Estima	ted Base Satu	ration (%)	
Total	Ca	Mg	K	Na
75.55	63.71	8.15	3.05	0.64

#### 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				lb/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	40	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	200	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID:	8706881318			
VENDOR	AR	72683			
Date Processed:	12/1/	2017			
Field ID:	CC1:	3YE			
Acres:	51				
Lime Applied in the last 4 years:	No				
Leveled in past 4 years:	No				
Irrigation:	Unkr	iown			
County:	Pope				
Lab Number:	1790	60			
Sample Number:	3464466				

#### 1. Nutrient Availability Index

A	entration	Soil Test Level
∛ ppm	lb/acre	(Mehlich 3)
88	176	Above Optimum
158	316	Optimum
1819	3638	
136	272	
14	28	
9.8	19.6	
110	220	
346	692	
1.7	3.4	
0.5	1	
13	26	
3.2	88 158 1819 136 14 9.8 110 346 1.7 0.5	88     176       158     316       1819     3638       136     272       14     28       9.8     19.6       110     220       346     692       1.7     3.4       0.5     1

#### 2. Soil Properties

2. 0011 10p	0/1100		. =	
	Property		Value	Units
Soil pH (1:2 so	il-water)		6.5	
Soil EC (1:2 so	il-water)			umhos/cm
Soil Estimated	CEC		13.71	cmolc/kg
Organic Matter	(Loss on Ignitio	n)		%
Estimated Soil	Texture		Silt Loam - Silt	y Clay Loam
	Estimat	ed Base Sati	ıration (%)	
Total	Ca	Mg	K	Na
78.12	66.33	8.27	2.95	0.57

#### 3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

1944	Grop:	N.	P2O5	K2O	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				- lb/acre -			<u> </u>
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	40	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	200	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	CC 14
Acres:	15
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179061
Sample Number:	3464467

#### 1. Nutrient Availability Index

Nutrient	Con	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	65	130	Above Optimum
K	129	258	Medium
Ca	789	1578	
Mg	129	258	
SO4-S	17	34	
Zn	10.9	21.8	
Fe	134	268	
Mn	304	608	
Cu	1.3	2.6	<u></u>
В	0.5	1	
NO3-N	7	14	

#### 2. Soil Properties

	Property		Value	Units
Soil pH (1:2 so	il-water)		6	
Soil EC (1:2 so	il-water)			umhos/cm
Soil Estimated		8.45	cmolc/kg	
Organic Matter	Organic Matter (Loss on Ignition)			%
Estimated Soil	Texture		Silt Lo	am
<u> </u>				
	Estimat	ed Base Satura	ation (%)	
Total	Ca	Mg	K	Na
64.48	46.71	12.73	3.92	1.13

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.) 3. Recommendations

	Crop	N	P2O5	K20	SO4-S	Zn	В	Lime -
Last Crop	Pasture (212)				lb/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	60	Ó	0	0	0
	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	250	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID:	8706881318
VENDOR	AR	72683
Date Processed:	12/1/	2017
Field ID:	C1C	15
Acres:	28	
Lime Applied in the last 4 years:	No	
Leveled in past 4 years:	No	
Irrigation:	Unkr	iown .
County:	Pope	:
Lab Number:	1790	62
Sample Number:	3464	468

#### 1. Nutrient Availability Index

Nutrient	Con	centration	Soil Test Level
	ppm lb/acre		(Mehlich 3)
· P	133	266	Above Optimum
K	170	340	Optimum
Ca	969	1938	
Mg	193	386	
SO4-S	16	32	
Zn	14.3	28.6	
Fe	124	248	
Mn	355	710	
Cu	2	4	
В	0.5	1	
NO3-N	11	22	

#### 2. Soil Properties

	The DECEMBER 2021 CAN SEE A SECRETARY	TO SELECT THE PROPERTY OF THE	EN F. 12 - 678°2 N. 885 KGS. 45 KH 695	ASSESSMENT OF A LOCAL CONTRACTOR OF A LOCAL		
	Property		Value	Units		
	33. July 34.753 Bu					
Soil pH (1:2 so			5.9			
Soil EC (1:2 soil-water)				umhos/cm		
Soil Estimated CEC			9.99	cmolc/kg		
Organic Matter (Loss on Ignition)			%			
Estimated Soil Texture			Silt Loam			
	•			· -···		
	Estimat	ed Base Satur	ation (%)			
Total	Estimat	ed Base Satur	ation (%)	Na Na		

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Grop	N.	P2O5	K2O	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				Ib/acre -			
	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	40	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	200	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)				-	_		

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	C1C 15B
Acres:	21
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179063
Sample Number:	3464469

#### 1. Nutrient Availability Index

Nutrient	2.50	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
P	145	290	Above Optimum
K	270	540	Above Optimum
Ca	1165	2330	
Mg	179	358	
SO4-S	18	36	
Zn	13.3	26.6	
Fe	139	278	
Mn	329	658	
Cu	1.6	3.2	
В	0.5	1_	
NO3-N	19	38	

#### 2. Soil Properties

	Property		Value	Units				
Soil pH (1:2 soil	l-water)		6					
Soil EC (1:2 soi	l-water)			umhos/cm				
Soil Estimated (	CEC		11.62	cmolc/kg				
Organic Matter	(Loss on Ignitio	n)		%				
Estimated Soil	l'exture	;	Silt Loam - Silty Clay Loam					
	Estimat	ed Base Satura	ation (%)					
Total	Ca	Mg	K	Na				
69.87	50.14	12.84	5.96	0.94				

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	, N	P2O5	K20	SO4-S	Zn	В	Lime
Last Crop	Pasture (212)				lb/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)		0	0	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)	<b>†</b>					1	

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR .	AR 72683
Date Processed:	12/1/2017
Field ID:	C1C15YE
Acres:	38
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179064
Sample Number:	3464470

#### 1. Nutrient Availability Index

Nutrient	1 0.224 - 18	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
Р	132	264	Above Optimum
K	207	414	Above Optimum
Ca	971	1942	
Mg	182	364	
SO4-S	17	34	
Zn	13.7	27.4	
Fe	124	248	
Mn	326	652	
Cu	1.8	3.6	
В	0.6	1.2	
NO3-N	19	38	

## Soil Properties

ty ) ) on Ignition)	1998	6 10.01	Units umhos/cm cmolc/kg				
)			cmolc/kg				
<u>'</u>	)	10.01	cmolc/kg				
on Ignition)	)	10.01					
on Ignition)		* * *					
			%				
Estimated Soil Texture			Silt Loam				
-							
Estimate	d Base Satı	uration (%)					
Са	Mg K		Na				
3.50	15.15	5.30	1.09				
		Estimated Base Satu	Estimated Base Saturation (%) Ca Mg K				

## 3. Recommendations

(Notice:	State and/or federa	nutrient managemen	it regulations ma	ly supersede thes	se agronomic	recommendations.)	

\$	Crop	N N	P2O5	K20	SO4-S	· Zn	В	Lime
Last Crop	Pasture (212)				Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	0	0	0	0	0
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)		0	0	0	0	0	0
Crop 3	Reg 5 - Analysis Only (21)							

4. Crop 1 Notes:
To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	BH 16
Acres:	21
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179082
Sample Number:	3464471

#### 1. Nutrient Availability Index

Nutrient	Cond	centration	Soil Test Level
	ppm	lb/acre	(Mehlich 3)
P	58	116	Above Optimum
Κ`.	138	276	Optimum
Ca	944	1888	
Mg	111	222	
SO4-S	13	26	
Zn	4.4	8.8	
Fe	195	390	
Mn	165	330	
Cu	1.5	3	
В	0.4	0.8	
NO3-N	8	16	

#### 2. Soil Properties

IV 2. N	Property		Value	Units :				
	,000.0		<b>V</b> uido	O I I I				
Soil pH (1:2 so	il-water)		5.7					
Soil EC (1:2 so	il-water)			umhos/cm				
Soil Estimated	CEC		10.07	cmolc/kg				
Organic Matter	Organic Matter (Loss on Ignition)			%				
Estimated Soil	Estimated Soil Texture			Silt Loam				
			_					
	Estima	ted Base Sal	uration (%)					
Total	Ca	Mg	K	Na				

3. Recommendations (Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	. В	Lime
Last Crop	Pasture (212)				Ib/acre -			
Crop 1	Mixed Cool and Warm-Season Grasses for Pasture (212)	60	0	40	0	0	0	4000
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	200	0	0 .	0	4000
Crop 3	Reg 5 - Analysis Only (21)							

#### 4. Crop 1 Notes:

To favor cool-season grasses, apply N in late winter. To favor warm-season grasses, do not apply N until May 1. For higher production, topdress 50 lb N/Acre after every 4-6 weeks of grazing or as needed.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1.



The University of Arkansas is an equal opportunity/affirmative action institution.

JASON HENSON HC 72 BOX 2	Client ID: 8706881318
VENDOR	AR 72683
Date Processed:	12/1/2017
Field ID:	JC 17
Acres:	36
Lime Applied in the last 4 years:	No
Leveled in past 4 years:	No
Irrigation:	Unknown
County:	Pope
Lab Number:	179083
Sample Number:	3464472

#### 1. Nutrient Availability Index

Nutrient	Concentration		Soil Test Level		
	ppm.	lb/acre	(Mehlich 3)		
P	87	174	Above Optimum		
К	72	144	Low		
Ca	2123	4246			
Mg	84	168			
SO4-S	12	24			
Zn	8.3	16.6			
Fe	139	278			
Mn	171	342			
Cu	1.9	3.8			
В	0.5	1			
NO3-N	11	22			

#### Soil Properties

2. σοπ τορ						
Property			Value	Units		
Soil pH (1:2 soil-water)			7			
Soil EC (1:2 soil-water)				umhos/cm		
Soil Estimated CEC			13.65	cmolc/kg		
Organic Matter (Loss on Ignition)				%		
Estimated Soil Texture			Silty Clay Loam - Clay Loam			
	Estimat	ed Base Sat	uration (%)			
Total	Ca	Mg	K	Na		
Total				L.		

3. Recommendations

(Notice: State and/or federal nutrient management regulations may supersede these agronomic recommendations.)

	Crop	N	P2O5	K20	SO4-S	Zn	В	Lime		
Last Crop	Hay (144)									
Crop 1	Mixed Cool and Warm Season Grasses 4 ton (144)	160	0	220	0	0	0	0		
Crop 2	Hay - Warm-Season Grasses (MNT) - 6 ton/acre (134)	300	0	300	0	0	0	0		
Crop 3	Reg 5 - Analysis Only (21)									

4. Crop 1 Notes:

To favor cool-season grasses, apply fertilizer in split applications in late winter and after spring hay harvest. To favor warm-season grasses, do not apply N until May 1. Split apply the recommended fertilizer rates after each subsequent hay harvest.

#### 5. Crop 2 Notes:

For optimum fertilizer efficiency, divide the recommended N, P, and K rates by the estimated number of harvests/year. Make the first fertilizer application in spring when night temperatures are > 60 degrees F for one week. Make subsequent applications following each harvest. Do not apply N after Sept. 1. If S deficiency has occurred previously on this field apply 20 lb SO4-S/Acre.

÷.

# Section I: Nutrient Test Results and How to

Cargonia

unit?

#### SECTION I. NUTRIENT TESTS RESULTS & HOW TO

The nutrient tests have been conducted at this time and are included in this report. Below are a list of available manure testing labs.

Laboratories Providing Manure Testing Services

- Agvise Laboratories
   902 13th St. N, P.O. Box 187
   Benson, MN 56215
   (320) 843-4109
   <a href="http://www.agviselabs.com">http://www.agviselabs.com</a>
- A&L Heartland Labs, Inc.
   111 Linn Street, P.O. Box 455
   Atlantic, IA 50022
   (800) 434-0109
   (712) 243-5213
   <a href="http://allabs.com">http://allabs.com</a>
- Servi-Tech Laboratories
   1602 Park Dr. West
   Hastings, NE 68902
   (402) 463-3522
   (800) 557-7509
   http://www.servitechlabs.com
- Ward Laboratories
   4007 Cherry Ave., P.O. Box 788
   Kearney, NE 68848
   (308) 234-2418
   (800) 887-7645
   <a href="http://www.wardlab.com/">http://www.wardlab.com/</a>
- Midwest Laboratories
   13611 "B" St.
   Omaha, NE 68144
   (402) 334-7770
   <a href="https://www.midwestlabs.com/">https://www.midwestlabs.com/</a>
- Stearns DHIA Laboratories 825 12th Street South, PO Box 227 Sauk Centre, MN 56378 (320) 352-2028 <a href="http://www.stearnsdhialab.com/">http://www.stearnsdhialab.com/</a>
- University of Arkansas 1366 West Altheimer Dr Fayetteville, AR 72704 (479) 575-3908

# How to Sample Manure for Nutrient Analysis

A field-by-field nutrient management program requires multiple components to maintain adequate fertility for crop growth and development. A well-designed soil sampling plan, including proper soil test interpretations along with manure sampling, manure nutrient analysis, equipment calibration, appropriate application rates and application methods are all necessary components of a nutrient management plan. Implementing these components allows manure to be recognized and used as a credible nutrient resource, potentially reducing input costs and the potential of environmental impacts.

Animal manure has long been used as a source of nutrients for crop growth. Standard nutrient values are guides to determine the amount of nutrients that animal manure will supply as a fertilizer source, lowa State University Extension publication, Managing Manure Nutrients for Crop Production (PM 1811), recommends manure nutrient content and credits by type of animal, handling system and application methods.

While "book values" like those in PM-1811 are reasonable average values, an individual farm's manure analyses can vary from those averages by 50 percent or more. Species, age of animal, feed rations, water use, bedding type, management, and other factors make every farm's manure different. Two key factors affecting the nutrient content of manure are manure handling and type of storage structures used. Each handling system results in different types of nutrient losses—some unavoidable and others that can be controlled to a certain degree. Because every livestock production and manure management system is unique, the best way to assess manure nutrients is by sampling and analyzing the manure at a laboratory.

This publication describes how to sample solid, semi-solid, and liquid manure. Manure with greater than 20 percent solids (by weight) is classified as dry manure and is handled as a solid, usually with box-type spreaders. Manure with 10 to 20 percent solids is classified as semi-solid manure and can usually be handled as a liquid. Semi-solid manure usually requires the use of chopper pumps to provide thorough agitation before pumping. Manure with less than 10 percent solids is classified as liquid manure and is handled with pumps, pipes, tank wagons, and irrigation equipment.

A representative manure sample is needed to provide an accurate reflection of the nutrient content. Unfortunately, manure nutrient content is not uniform within storage structures, so obtaining a representative sample can be challenging. Mixing and sampling strategies should therefore insure that samples simulate as closely as possible the type of manure that will be applied.

#### When to Sample Manure

Sampling manure prior to application will ensure that you receive the analysis in time to adjust nurriem application rates based on the nutrient concentration of the manure. However, sampling manure prior to application may not completely reflect the nurrient concentration of the manure due to storage and handling losses if long periods of time pass before application begins or when liquid storage facilities are not adequately agitated while sampling. "Pre-sampling" such as dipping samples off the top of storage structure for nitrogen (N) and potassium (K) concentrations, can be done to estimate application rates. (See page 3 for more on pre-sampling). Producers must remember to go back and determine the actual nutrient rates applied by using manure samples collected during application and calculating volumes.

For best results, manure should be sampled at the time of application or as close as possible to application. Sampling during application will help to ensure that samples are well-mixed and representative of the manure being applied. Because manure nutrient analysis typically takes several days at a lab, sampling at the time of application will not provide immediate manure nutrient recommendations. The results can, however, be used for subsequent manure applications and to adjust commercial fertilizer application. This is why it is important to develop a manure sampling history and use those analyses in a nutrient management plan. A manure sampling history will also help you recognize if unplanned changes have occurred to your system if management and other factors have remained constant. A manure sampling history will give you confidence in using manure, and show you how consistent nutrient concentration is from year to year.

Take manure samples annually for three years for new facilities, followed with samples every three to five years, unless animal management practices, feed rations, or manure handling and storage methods change drastically from present methods. If you apply manure several times a

IOWA STATE UNIVERSITY

University Extension

PM 1558 Revised November 2003

year, take samples when you plan to apply the bulk of manure. For example, it may be appropriate to sample in the spring when manure that has accumulated all winter will be applied. If storages are emptied twice a year, it may be necessary to sample in both spring and fall since the different storage temperatures in summer versus winter will affect manure nutrient levels. NOTE: Implementation of future federal regulations may require concentrated animal feeding operations (> 1,000 animal units) to sample annually. Please check state and federal requirements to determine sampling frequency.

#### How to Sample Semi-Solid or Liquid Manure

In liquid and semi-solid systems, settled solids can contain over 90 percent of the phosphorus (P), so complete agitation is needed to accurately sample the entire storage if all the manure in the storage structure is going to be applied. If, however, solids will purposely be left on the bottom of the storage structure when the manure is pumped out, as is sometimes the case with lagoons, then complete agitation during sampling may generate artificially high nutrient values. In this case agitation of the solids or sludge on the bottom of a lagoon is not needed for nutrient analysis.

Liquid manure is best sampled during land application, for it is potentially more difficult and dangerous to sample from liquid storage facilities than dry manure systems. When sampling manure during application is not possible, or preapplication analysis is desired for determining rates, refer to the section on sampling from a storage facility. If sampling from a liquid storage facility, use caution to prevent accidents, such as falling into the manure storage facility or being overcome with hazardous gases produced by manure. Have two people present at all times. Never enter confined manure storage spaces without appropriate safety gear such as a self-contained breathing apparatus.

Ideally, liquid manure should be agitated so a representative sample can be obtained for laboratory analysis. When agitating a storage pit below a building, be sure to provide adequate ventilation for both animals and humans. When agitating outdoor unformed pits, monitor activities closely to prevent erosion of berms or destruction of pit liners.

#### Liquid Manure Sample Preparation

All liquid samples should be handled as follows:

 Prior to sampling label a plastic bottle with your name, date and sample identification number using a waterproof pen.

If the sample cannot be mailed or transported to a laboratory within a few hours, it should be frozen. Place the container in a tightly sealed plastic bag and keep it cold or frozen until it arrives at the laboratory.

 Most manure analysis laboratories do have plastic bottles available for sample collection. Do not use glass containcrs, as expansion of the gases in the sample can cause the container to break.

# Liquid Manure Sampling During Land Application Liquid Manure Applied with Tank Wagons

- Since settling begins as soon as agitation stops, samples should be collected as soon as possible after the manure tank wagon is filled unless the tanker has an agitator.
- Immediately after filling the tank wagon, use a clean
  plastic pail to collect manure from the loading or unloading port or the opening near the bottom of the tank. Be

sure the port or opening does not have a solids accumulation from prior loads.

 Use a ladle to stir the sample in the bucket to get the solids spinning in suspension. While the liquid is spinning remove a ladle full and carefully pour in the sample bottle. See Figure 1.

 Repeat this procedure and take another sample until the sample bottle is three-quarters full (Make sure the manure solids have not settled to the bottom of the bucket as each ladle is extracted; it is important to

include the solids in the sample). Screw the lid on tightly.



Figure 1. Collecting a liquid manure sample.

#### Liquid Manure Applied by Irrigation Systems

 Place eatch pans or buckets randomly in the field to collect liquid manure that is applied by an irrigation system. Inexpensive aluminum roasting

pans or plastic buckets can be used as catch pans. Use several pans at different distances from the sprinkler head.

- Immediately after the manure has been applied, collect manure from catch pans or buckets and combine the manure in one bucket to make one composite sample.
- Use a ladle to stir the sample in the bucket. While the liquid is spinning remove a ladle full and carefully pour into a sample bottle. See Figure 1.
- Repeat this procedure and take another sample until the sample bottle is three-quarters full. Screw the lid on tightly.

### Liquid Manure Sampling from Storage Facilities

For best sampling results, samples should be taken with a sampling probe or tube (see Figure 2). Probes can be constructed out of 1.5-inch diameter PVC pipe. Cut the PVC pipe a foot longer than the depth of the pit. Run a 1/4-inch rod or string through the length of the pipe and attach a plug such as a rubber stopper or rubber ball (see Figure 3). The rod or the string must be longer than the pipe. If using a rod, bend the top over to prevent it from falling out of the pipe.

 Insert the pipe slowly into the pit or lagoon, with the stopper open, to the full depth of the pit.



Figure 2. Sampling earthen basin with sampling probe.

- Pull the string or rod to close the bottom of the pipe and extract the vertical profile sample inside the pipe (be careful not to tip the pipe and dump the sample).
- Release the sample carefully into a bucket.
- Repeat the process at least three times around the pit or lagoon creating a composite sample in the bucket.
- Use a ladle to stir the sample in the bucket to get the solids spinning in suspension. While the liquid is spinning.

- take a ladle full and carefully pour into a sample bottle.
- Repeat again and take another sample until sample bottle is three-quarters full. Make sure the manure solids have not settled to the bottom of the bucket as each dipper is extracted; it is important to include the solids in



Figure 3. Rubber stopper attached to a metal rod to serve as a stopper for PVC manure sampling tube.

the sample. Serew the lid on tightly.

#### Pre-Sampling Nitrogen and Potassium from Liquid Manure

If the procedures described above for sampling liquid manure are impractical due to lack of sampling equipment, or the inability to agitate the manure, manure samples can be dipped off the top of stored liquid manure to analyze for N and K concentrations. Research has shown that top-dipped liquid samples represent approximately 90 percent of the N concentration measured in mixed, field-collected samples. Multiply the results of the N concentration from top-dipped samples by 1.1 for a better estimate of the N concentration of the liquid storage facility. Dipping a sample from the surface of a liquid storage pit does NOT provide a good estimate of P concentration in the pit and is not recommended.

#### How to Sample Dry or Solid Manure

In solid manure handling systems, many of which include bedding, the proportions of fecal matter, urine, and bedding will vary from one location to another within sites, and often from season to season as well. It is necessary to take samples from various places in the manure pile, stack, or litter to obtain a representative sample for analysis. It may even be beneficial to sample several times per year based on the bedding content.

Manure sampling is best done in the field as manure is applied. This ensures that losses that occur during handling, storage, and application are taken into account and that manure is better mixed, reducing stratification found during sampling storage facilities. As with field sampling of liquid manure, results will not be available in time to adjust current application rates. However, sampling during application will still allow producers to adjust any planned future commercial fertilizer rates and manure application in subsequent years. The following method describes a procedure for collecting dry or solid manure samples from the field.

#### Dry Manure Sampling During Land Application

Collect manure samples according to the following field sampling procedure.

- Spread a sheet of plastic or tarp on the field. A 10-feet-by-10-feet sheet works well for sampling manure.
- Fill the spreader with a load of manure.
- Drive the tractor and manure spreader over the top of the plastic to spread manure over the sheet.
- Collect subsamples as described below (Steps 1-3, Com-

posite Sample Collection).

 Samples should be collected to represent the first, middle and last part of the storage facility or loads applied and should be correlated as to which loads are applied on certain fields to track changes in nutrient concentrations throughout the storage facility.

#### Sampling from Dry or Solid Storage Facilities and Open Lots

Manure should be sampled at the time of application, but if time and management practices prevent this, manure samples can be collected from the storage facility. Sampling from storages is not generally recommended due to difficulty in collecting a representative sample. Although solid manure storages are generally not fully enclosed and gases are somewhat diluted, always exercise caution when sampling from storage facilities. If you have to enter a confined storage facility, follow the safety recommendations described previously in the section on sampling liquid manure storages.

#### **Open Paved Lots**

Manure that accumulates on paved feedlots and is scraped and hauled to the field is classified as scrape-and-haul feedlot manure. Manure is usually removed from the feedlot daily or several times a week.

- Collect manure by scraping a shovel across approximately 25 feet of the paved feedlot. This process should be repeated ten or more times, taking care to sample in a direction that slices through the large-scale variations of moisture, bedding, depth, age, etc. (See Figure 4). Avoid manure that is excessively wet (near waterers) or contains unusual amounts of feed and hay.
- Use the shovel to thoroughly mix manure by continuously scooping the outside of the pile to the center of the pile.
- Collect subsamples from this pile using the hand-in-bag



Figure 4. Sampling a feed-lot for manure sample.

method that is described below (Steps 1-3 Composite Sample Collection).

• This may need to be done several times to collect several composite samples for analysis.

#### Barn Gutter

Manure that accumulates in a barn or

housing facility, is temporarily stored in a gutter, and then removed by a barn cleaner is classified as barn gutter manure. Manure is usually removed from the barn once or twice daily.

- Shovel a vertical "slice" of manure from the gutter, making sure the shovel reaches to the bottom of the gutter.
- Remove manure from the gutter and pile it on the barn floor. Mix the manure with a shovel or pitchfork to ensure that bedding is mixed thoroughly with manure. When collecting samples from a gutter, be sure to include the liquid that accumulates in the gutter's bottom. Discard foreign material and also take care not to add large amounts of barn lime.
- Repeat steps one and two from various locations along the gutter.
- Mix each pile thoroughly and collect subsamples from each pile using the hand-and-bag method that is described below (Steps 1-3, Composite Sample Collection).

#### Dry Stack and Manure with Litter

Manure that is stored outside in a solid waste storage facility, such as a stacking shed or horizontal concrete silo located above ground, is classified as a dry stack. These facilities are usually covered to prevent the addition of extra water. Dry

manure with litter should also be sampled in the following manner.

- Remove manure from 10 to 20 locations throughout the dry stack and place it in a pile using a pitchfork or shovel. Manure should be collected from the center of the stack as well as from near the outside walls, to get samples that represent all ages and moisture levels of manure in the stack. A bucket loader can cut a path into the center of the pile to provide access for sampling. Subsamples should be collected to the depth the litter will be removed for application.
- Thoroughly mix manure with the shovel by continuously scooping the outside of the pile to the center of the pile.
- Collect a composite manure sample as described below (Steps 1-3, Composite Sample Collection).

## Composite Sample Collection for Dry or Solid Samples

- Whether collecting from a plastic tarp in the field, a feedlot, a storage facility, or a barn, sample in a grid pattern so that all areas are represented. Combine 10 to 20 subsamples in a bucket or pile and mix thoroughly. More subsamples will produce more accurate results and are often required to produce a composite that best represents nutrient levels.
- 2. The final composite sample that will be submitted for nutrient analysis should be collected using the hand-in-bag method. To collect a composite sample from the mixed subsamples, place a one-gallon rescalable freezer bag turned inside out over one hand. With the covered hand, grab a representative handful of manure and turn the freezer bag right side out over the sample with the free hand. Be careful not to get manure in the scalable tracks.
- 3. Squeeze excess air out of the bag, seal, and place it in another plastic bag to prevent leaks. Label the bag with your name, date, and sample identification number with a waterproof pen and freeze it immediately to prevent nutrient losses and minimize odors. For manure with a high degree of variability, multiple samples may need to be analyzed. Manure samples should be mailed or delivered to the laboratory as soon as possible after sampling.

Manure samples should be sent to a lab for chemical analysis as quickly as possible to avoid nutrient losses. For a list of commercial laboratories, please call your ISU Extension office or visit the Web at: http://extension.agron.iastate.edu/immag/sp.html.

Table 1. 0	Conversion F	actors
To switch from	Multiply by	To get
mg/l	1.0	ppm
ppm	0.0001	percent
ppm	0.00834	lb/1,000 gal
ppm	0.002	lb/ton
ppm	0.2265	lb/acre-inch
lb/1,000 gal	0.012	percent
lb/ton	0.05	percent
percent	83.4	lb/1,000 gal
percent	20.0	lb/ton
percent	2265	lb/acre-inch
P (elemental)	2.29	P ₂ O ₅
K (elemental)	1.2	K ₂ O

# Additional Information and Resources

Basic manure analyses determined by laboratories include total nitrogen, total phosphorus, and total potassium. Results. from commercial laboratories are presented either as a percent of the sample weight, as pounds per ton, as pounds per 1,000 gallons of manure, or in parts per million (ppm). Table 1 shows factors used to convert between measurements. Usually, nutrients are expressed as N, P,O, or K,O on a wet or "as received" basis, but some labs may instead report data on an elemental (P instead of P₂O₃, K instead of K₂O) or dry (without water) basis; so, be sure to confirm the units. In any case, manure values from commercial laboratories express nutrients as the total amount of nutrient in the manure sample. Some primary nutrients, such as N and P, may not be completely available for plant growth the first year manure is applied. A portion of some nutrients present in manure are in an organic form and unavailable for immediate plant uptake. Organic forms require transformation to an inorganic form to be available for plant uptake. This transformation is dependent on temperature, moisture, chemical environment, and time. Availability of murients can be limited by field losses, which are affected by the type of manure and by manure application methods. These losses are not accounted for in laboratory results. Refer to the ISU Extension publication Managing Manure Nutrients for Crop Production (PM 1811) for nutrient availability estimates and losses due to types of manure application methods.

PM 1518k Manure Storage Poses Invisible Risks PM 1941 Calibration and Uniformity of Solid Manure Spreaders (12/03)

PM 1948 Calibrating Liquid Manure Applicators (02/04) PM 1811 Managing Manure Nutrients for Crop Production

Additional resources may be found on the lowa Manure Management Action Group (IMMAG) Web page at: http://extension.agron.iastate.edu/immag/default.htm

Prepared by Angela Rieck-Hinz, extension program specialist, Dept. of Agronomy; Jeffery Lorimor, associate professor, and Tom L. Richard, associate professor, Dept. of Agricultural and Biosystems Engineering and Kris Kohl, ISU field specialist- Agricultural Engineering.

Photos submitted by John Sawyer, Kris Kohl, Joel DeJong, Jeff Lorimor and Charles Wittman

Reviewed by: John Sawyer, ISU; Chris Murray, Iowa Natural Resources Conservation Service and Marty Schwager, Iowa Pork Producers Association.

File: Agronomy 7-4

.. and justice for all The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Many materials can be made available in alternative formats for ADA clients. To life a complaint of discrimination, write USDA, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964.

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Stanley R. Johnson, director, Cooperative Extension Service, Iowa State University of Science and Technology, Ames, Iowa.

#### AGRICULTURAL DIAGNOSTIC SERVICE LABORATORY

1366 W. Altheimer Dr., Fayetteville, AR 72704

(479)575-3908

agrilab@uark.edu



University of Arkansas, Dept. of Crops, Soils, and Environmental Science

LIQUID MANURE FOR FERTILIZER ANALYSIS (report for AGRI-429) Name: KARL VanDEVENDER Received in lab: 2/09/2018 Address: 2301 S UNIVERSITY AVE E- Mailed: 2/16/2018 (6 business days) City: LITTLE ROCK AR 72204 State, Zip: County: Phone #: E-Mail: kvandevender@uaex.edu sharpley@uark.ed Check #: **BCRET FUND (LRSO)** Lab. No. M80169 M80170 Sample I.D. C&H P1C C&H P2C Animal type swine swine age / lbs no info no info Bedding type none none Manure type pond liquid pond liquid Sample date 2/08/2018 2/08/2018 Age of manure no info no info pН 7.7 8.0 EC(µmhos/cm) 11800 11630 % Solids 2.87 0.72 -mg/l on as-is basis-Total N 2590 1000 Total P 1485 136 Total K 1756 1519 Total Ca 1342 58 NH4-N 1341 991 NO3-N 84 Water Extractable P 149 -lbs/1000 gal on as-is basis-Total N 21.6 8.3 TOTAL P AS -"P2O5" 28.3 2.6 TOTAL K AS "K20" 17.6 15.2 Total Ca 11.2 0.5 NH4-N 11.2 8.3 NO3-N

0.7

1.2

Water Extractable P

^{*}lbs/1000gal P2O5 = mg/l Total P on "as-is" basis multiplied by 2.29*0.00833

^{*}lbs/1000gal K2O = mg/l Total K on "as-is" basis multiplied by 1.2*0.00833

^{*}Water Extractable P: 1:100 solids to H2O ratio, I hr shake, centrifuged, filtered, acidified, analysis by ICP

Section J: Mortality Disposal Actions

#### SECTION J. Livestock Mortality Management Plan

Mortalities will be disposed with an incinerator. The use of an incinerator to dispose of the carcasses uses propane or diesel. The ashes are land applied. Incinerators reduce carcasses to ashes. The Incinerator meets state requirements for burners and emissions. Minimum incinerator capacity shall be based on the average daily weight of animal mortality and the length of time the incinerator will be operated each day.

In the case of emergency when it may not be possible for the incinerator to keep up a proposed emergency burial site will be used.

The primary method of carcass disposal in the future may be In-Vessel Composter called a BIOvator.

The following is an Excerpt from Act 87 of 1963-Code 2-33-101 and Act 150 of 1985-Code 19-6-448 by the Arkansas Livestock and Poultry Commission

Carcasses may be buried at a site at least 100 yards away from a well and in a place where a stream cannot be contaminated. Anthrax carcasses are to be covered with 1 inch of lime. Other carcasses may be covered with lime, particularly when needed to control odors. All carcasses are to be covered with at least 2 feet of dirt. Carcasses are not to be buried in a landfill, without prior approval of the State Veterinarian.

Act 87 of 1963, Act 150 of 1985, and Act 522 of 1993: Disposal of carcass of animal dying from contagious or infectious disease.

9141. Any person that has the care or control of any animal that dies from any contagious disease shall immediately cremate or bury the animal.

9142. An animal which has died from any contagious disease shall not be transported, except to the nearest crematory. The transportation of the animal to the crematory shall be pursuant to such regulations as the director may adopt.
9143. An animal which has died from any contagious disease shall

9143. An animal which has died from any contagious disease shal not be used for the food of any human being, domestic animal, or fowl.

# Section K: Livestock Feed Management



# Environmental Nutrition: Nutrient Management Strategies to Reduce Nutrient Excretion of Swine

E. T. KORNEGAY, PAS and A. F. HARPER, PAS

Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306

#### **Abstract**

Intensive production of swine has brought an increase in the volume of manure produced on farms with limited land area. Exceeding the capacity of soil and crops to handle this volume of manure results in nutrient accumulation in and on the soil that can produce leakage of nutrients to the environment and pollution could result. Environmental nutrition is defined as the concept of formulating cost-effective diets and feeding animals to meet their minimum mineral needs for acceptable performance, reproduction, and carcass quality with minimal excretion of minerals. Pigs normally excrete 45 to 60% of N, 50 to 80% of Ca and P, and 70 to 95% of K, Na, Mg, Cu, Zn, Mn, and Fe when fed diets containing commonly used feedstuffs. Although it is not possible to make pigs 100% efficient in utilization of nutrients, it is possible to reduce the amount of nutrients excreted through careful nutrient management. Several strategies are possible for reducing nutrients excreted: 1) improvements in feed efficiency, 2) more accurate nutrient requirement information for animals and compositional data for feed ingredients,

3) reduced feeding of excess nutrients through overformulation, 4) feeding for optimal rather than maximum performance, 5) use of crystalline amino acids and high quality protein, 6) improving the availability of P and some other minerals, 7) use of phase feeding and separate-sex feeding, and 8) reduced feed waste. Some strategies have a much greater potential for reducing nutrients excreted than other strategies. In the future, diet formulation and feeding must be integrated into total production systems so that swine production systems are environmentally safe as well as economically viable.

(Key Words: Environment, Nutrient Management, Pigs.)

#### Introduction

Pigs traditionally have been fed to maximize performance with little or no regard for nutrients excreted. During the past decades, advances in genetics, nutrition, housing, physiology, disease control, and management have resulted in major improvements in the efficiency of swine production. Along with these improvements has been an increase in the size and intensity of production units to maximize the benefits from these improvements and to optimize the use of capital, labor, and

facilities. This large increase in size of animal units, however, has led to an overall increase in environmental burdens, such as excessive amounts of waste and odor. Commercial swine production is an essential component of our food supply. However, this important agricultural enterprise is being restricted in some countries and will be restricted in other countries if solutions to the problem of manure disposal and odor control are not developed and implemented.

Because of the high nutrient content of manure, and thus fertilizing value, land application has been the major means of manure disposal. However, there are limits to the amount of manure that can be applied to the land because of nutrient build-up in and on the soil. The potential environmental impact of nutrient contamination of the environment is perceived as a major issue facing livestock producers in many countries (15, 19, 40, 90). A major concern for surface water quality is the eutrophication of lakes and streams (20), and P, not N, is the limiting nutrient for algae and other aquatic plant growth (75, 80). Also, an excessive build-up of nutrient levels in the soil is of long-term concern because of potential pollution through ground water and soil

erosion and run-off, as well as a potential reduction in crop yield.

To avoid leakage to the environment and potential pollution, governments in many countries are passing legislation requiring nutrient management plans for each farm, thus the amount of manure that can be applied to the land is being regulated (35). Most states in the U.S. are starting to monitor farms where large numbers of food-producing animals are maintained on a small acreage. Coffey (15) has stated that technology does exist for concentrated production of livestock in an environmentally sound manner. However, he also said that even though good technology exists today, there are opportunities for reducing nutrients excreted, and thus reducing land requirements.

Managing manure in swine confinement systems has always been a problem, and it will be a much greater problem and challenge in the future because the volume of manure per production unit has increased as production units have increased in size and intensity. Also, environmental concerns have increased and will continue to increase in the future as indicated by all trade magazines and newspapers for livestock and poultry agriculture. Two equally important approaches must be taken in dealing with this challenge: First, the amount of nutrients being excreted must be reduced; and second, the nutrients that are excreted must be recycled in a manner that is not damaging to the environment. It was stated in 1981 by the Agricultural Research Council (4) that the concept of a minimum requirement of a mineral that sustains an acceptable standard performance of pigs needed to be developed and should be cost-beneficial. Environmental nutrition is defined as the concept of formulating costeffective diets and feeding animals to meet their minimum mineral needs for acceptable performance, reproduction, and carcass quality with minimal excretion of minerals. This paper discusses methods of reducing nutrient excretion in manure as an

important component of the solution to this environmental problem.

# Assumptions and Nutrients of Concern

There are four basic assumptions in this concept of environmental nutrition. 1) All animals will excrete some nutrients; therefore, 100% efficiency will not be reached. 2) The total farm production system must be sustainable and nutrients should not become detrimental to the environment. 3) Manure is biodegradable it is made up of various organic and inorganic nutrients and can serve as a source of nutrients for both plants and animals when managed properly. 4) Swine producers want to contribute to a healthy environment; consumers, however, must recognize that additional production costs may result and must ultimately be paid by

Digestion and retention coefficients for N and several minerals are given in Table 1 for various sizes of pigs. Generally, pigs only retain from 20 to 55% of the N consumed. The amount of Ca and P retained can vary from 20 to 72% with slightly more Ca retained than P. The retention of Mg, Na, and K vary from 5 to 38% of that consumed. The retention of Zn, Cu, Fe, and Mn is also low, with values ranging from 8 to 45% of the intake. Younger animals may be slightly more efficient than older animals, but there is also a larger database for the younger animals. Other factors can influence the retention of N and minerals. The amount of minerals retained as a percentage of intake decreases as intake increases. The retention of chemically bound forms of some minerals will be increased if they are released in the digestive tract. For example, phytase can enhance the retention of Ca, P, and Zn. Fiber is known to decrease the retention of some minerals. Therefore, the bioavailability of the mineral source will influence the retention of minerals.

Of the nutrients present in manure, N, P, K, and trace minerals (probably Cu and Zn) are of greatest concern. There is general agreement that P and N are currently the two elements in manure that limits the rate of land application, but there is disagreement as to which one is of greatest concern. In the Netherlands, manure disposal is a major concern on swine and poultry farms because of the small land base of these farms (28). However, within Dutch animal agriculture, the dairy and swine industries are the largest contributors to manure production. In the Netherlands, there are laws that regulate the amount and method of waste disposal. These regulations will become more restrictive by the yr 2000 (28).

Nitrogen is used as the base to regulate the amount of manure that can be applied to the land in many areas, including the U.S. However, in the future it is likely that N and P will be the nutrients that limit land application of manure in more intensive swine and poultry producing areas. Results of a recent livestock nutrient assessment in North Carolina (7) supports the position that P may well be the nutrient that determines the amount of manure that can be applied to many soils and crops. Barker and Zublena (7) reported that statewide animal and poultry manure could provide about 20% of the N and 66% of the P requirements of all nonlegume agronomic crops and forage. However, these researchers found that 3 of 100 counties in North Carolina had enough manure to exceed all crop N requirements, and 18 counties had enough manure to exceed crop P

High P levels in the soil have also been reported for many states. Sweeten (86) estimated that for the 145.5 metric tons of manure produced annually by livestock and poultry in the U.S., pigs excrete about 23% of the P and poultry excrete about 13%. Dairy cattle excreted 12% of the total P in all manure. Sims (84) reported that

TABLE 1. Digestion and retention of nitrogen and minerals by different classes of pigs.

Class or size of plgs

Minerals	Young	Finishing	Gestating	Lactating
Nitrogen		THE COLUMN TWO IS NOT		
Digested, %	75 to 88	75 to 88	88	_
Retained, %	40 to 50	40 to 50	35 to 45	20 to 40
Calcium				
Digested, %	55 to 75	40 to 50	10 to 37	19 to 26
Retained, %	40 to 72	25 to 50	35	_
Phosphorus				
Digested, %	20 to 70	20 to 50	3 to 45	1 to 35
Retained, %	20 to 60	20 to 45	20 to 35	20
Magnesium				
Digested, '%	20 to 45	28 to 38	14 to 21	7 to 18
Retained, %	20 to 38	15 to 26	_	_
Sodium				
Digested, %	-	35 to 70	-	***
Retained, %		13 to 26	_	_
Potassium				
Digested, %		60 to 80		_
Retained, %	5 to 10	10 to 20	_	5
Zinc digested, %	20 to 45	10 to 20	_	
Copper digested, %	18 to 25	10 to 20		-
	30 to 35	5 to 35	_	_
Manganese digested, %	17 to 40	8 to 18	_	

Data for this table was adapted from Adeola (1), Adeola et al. (2), Apgar and Kornegay (3), Bruce and Sundstal (11), Coppoolse et al. (18), Dungelhoef et al. (29), Everts (32), Jongbloed (43), Jongbloed et al. (46, 47), Kornegay et al. (56), Kornegay (50), Kornegay and Kite (54), Kornegay and Qian (55), Lantzsch and Drochner (58), Lindemann et al. (62), Moore et al. (64), Näsi (66), Pallauf et al. (71, 72, 73, 74), Qian et al. (76), Swinkels et al. (87), Verstegen (91), Vipperman et al. (94), Yi et al. (98).

recent surveys reveal that several states had found greater than 50% of the soil samples tested for crop production to be rated high or excessive in P. These states include Maine, Connecticut, Delaware. Maryland, Michigan, Minnesota, Virginia, North Carolina, South Carolina, Ohio, Iowa, Idaho, Indiana, Illinois, Utah, Wisconsin, Wyoming, Arizona, and Washington. The impact of high P levels in the soil has been reviewed recently by Pierzynski et al. (75), Sharpley (79), Sharpley et al. (80, 81), and Crenshaw and Johanson (20). Phosphorus currently is the nutrient that regulates the amount of waste that can be applied to the land in some countries and

will probably replace N in other countries, but in the long-term Cu and Zn may be of concern.

Soil analyses of a Sampson County, NC, bermudagrass pasture that was fertilized with swine lagoon effluent to satisfy N requirements showed approximately a 400% increase in P and Zn, a 100% increase in K, and a 300% increase in Cu to a depth of 91 cm during the 3-yr period of application (Table 2; 65).

Starting in 1978 through 1992, the application of Cu-rich pig manure (from pigs fed 255 ppm Cu as CuSO₄) at an average annual rate of 80 ton/acre (22.4% DM) to three soil types increased the soil DTPA (diethylenetriaminepentaacetic acid)

extractable concentration of P, Cu, and Zn in the Ap and upper B horizon (D. C. Martens and E. T. Kornegay, unpublished data). The average annual rate of application per acre was 21.9 lb of Cu, 7.1 lb of Zn, and 378.6 lb of P. The application of a similar amount of Cu from CuSO, resulted in similar increases in Cu. For example, high quality deep core soil samples taken in the spring of 1996 revealed that the increases varied based on soil type and treatment (Table 3). There were 9.0-, 19.6-, and 3.6-fold increases in extractable Cu for silt loam (0 to 12 in), sandy loam (0 to 10 in), and clay loam (0 to 4 in) soils, respectively, in the Ap horizon when Cu-rich pig manure and CuSO, were added. There were 2.1-, 2.5-, and 2.6-fold increases in extractable Zn, respectively, when Cu-rich pig manure was added. Also, there were 2.4-, 5.7-, and 11.7-fold increases in extractable P, respectively, when Cu-rich pig manure was added. There were some increases in the upper B or A, horizons, but the magnitude of the increases was much less and the total concentration for all soils and treatments was much less. Little effect of treatments for the different soil types was observed below the upper B or A horizon. The Cu (2.3 to 2.6 ppm) and Zn (16.8 to 20.3 ppm) concentrations of the grain grown on these soils were not changed. Corn ear leaf tissue had a slightly higher Cu concentration (113 to 172% of controls) but Zn concentrations were similar. Phosphorus was not measured in plant tissue and grain. Grain yield was not decreased by Cu application during any year on the three soil types.

# Strategies for Reducing Nutrients Excreted

The following strategies for reducing nutrients excreted will be briefly discussed and examples given:
1) Improvement of feed efficiency; 2) Reduction of "overformulation" or nutrient excesses; 3) More accurate

TABLE 2. Soil analyses for a Sampson County, NC bermuda-grass pasture fertilized with swine lagoon effluent^a.

	•	b	H	(p	Zr	า	Cu	I
Depth	1990	1992	1990	1992	1990	1992	1990	1992
(cm)								
0 to 15	118	212	147	191	1.28	5.28	0.47	2.65
15 to 30	39	190	184	183	0.38	2.39	0.48	1.65
30 to 61	4	46	355	1389	0.20	1.38	0	1.78
61 to 91	3	14	298	797	0.26	1.02	0	1.21

^aSwine lagoon effluent was added at a rate to meet the N needs of the bermudagrass pasture. Initial sample was taken June 28, 1990 and final sample taken December 2, 1992. Adapted from Mueller et al. (65).

nutrient requirements of animals and compositional information for feed ingredients; 4) Feeding for optimal rather than maximum performance; 5) Use of crystalline amino acids and high quality protein; 6) Improvement of the availability of P and some other minerals; 7) Use of phase feeding and separate-sex feeding; and 8) Reduction of feed waste. Other strategies, such as controlling disease and parasites, providing a comfortable environment, and reducing stress are also very important and can lead to improved efficiency, but will not be discussed in this paper. Some strategies have a much greater potential for reducing nutrients excreted than others, and some strategies will be more applicable than others depending on the individual farm situation.

Improvement of Feed Efficiency. Improvements in overall feed efficiency can produce a major reduction in the excretion of nutrients. Coffey (15) reported that a reduction in the feed to gain ratio of 0.25 percentage units (i.e., 3.00 vs 3.25), would reduce N excretion by 5 to 10%. Henry and Dourmad (40) reported for growing-finishing pigs that for each 0.1 percentage unit decrease in feed to gain ratio there was a 3% decrease in N output. Feed efficiency can be improved in several

ways: 1) Improvements in the genetic potential of animals can have a tremendous impact on feed efficiency. 2) Proper formulation of diets using high quality ingredients will also improve feed efficiency. 3) The use of certain processing and feeding methods can further improve feed efficiency. 4) Although sometimes controversial, the use of repartitioning agents can result in improvements in feed efficiency and major improvements in carcass muscling.

Reduction of Overformulation or Nutrient Excesses. The amount of nutrients excreted can be reduced by decreasing "overformulation" or the inclusion of excess levels of nutrients in the diet. Traditionally, the main consideration of diet formulation was to maximize the growth and health of the animal. Little concern was shown for excess nutrients excreted. Results of numerous surveys of the nutrient composition of diets being fed indicate that excesses of several nutrients continues to be included in the diet. Some nutritionists refer to these excesses as a safety factor. Excess nutrients may be included in the diet to account for the variability of nutrient composition of feed ingredients, or to make up for a lack of knowledge concerning the availability of the nutrients in the feed

ingredients used. More recently, it has been argued that higher nutrient levels are required because of possible genetic differences in nutrient requirements. Whether this is true or not remains to be proven. Results of surveys reported by Cromwell (22) of the Ca and P recommendations of several universities and feed companies indicated that feeding excess P may be a common practice (Table 4). The average range of university recommendations were 110 to 120% of NRC (69) guidelines, whereas the average range of industry recommendations were 120 to 130% of NRC (69) guidelines. Spears (85) reported results of diets analyzed by the North Carolina Feed Testing Laboratory for sows and finishing pigs (Table 5). Excesses of most minerals were observed. The median levels as a percentage of NRC (69) guidelines were 140 to 192 for Ca, P, and Na; 390 to 525 for K and Mg; 334 to 776 for Cu, Fe, and Zn; and 770 to 3,100 for Mn. Minerals such as P, Cu, and Zn may be of greater environmental concern. Other surveys in the past have reported similar results of the inclusion of excess nutrients in the diet.

A large decrease in the excretion of minerals can be obtained by diet formulation to more accurately meet nutrient requirements. Latimer and Pointillart (59) reported that finishing pigs fed diets containing 0.5% P grew as fast and as efficiently as those fed 0.6% P, but P excretion was 33% less for pigs fed the lower level of P. Walz et al. (95) reported that supplemental amino acids (lysine, methionine + cystine, threonine, and tryptophan) improved protein retention of pigs fed a low protein diet (25% less than recommended by German guidelines); N excretion was reduced approximately 30%. The use of more precise composition and nutrient availability data for feed ingredients, and better defined nutrient requirements for animals, will allow for the formulation of diets that better meet the needs of the animal at the various stages of production. A reduction in the amount of excess

 $^{^{\}mathrm{b}}$ Assumed  $\mathrm{P_{2}O_{5}}$  contained 43.64% P and  $\mathrm{K_{2}O}$  contained 82.98% K.

TABLE 3. Mehlich-3 extractable Cu, Zn, and P concentrations in three soil types after 16 annual applications of Cu-rich manure and CuSO₄.

				Cu			Zn			P	
Horizon	Depth	Classa	Contro	Cu ol manu	Cu re sulfate	Contro	Cu ol manu	Cu re sulfate	Contro	Cu ol manur	Cu e sulfate
	(cm)			··· (ppm ^b	)	byvord haven do no con some con-	(ppm ^b	)	***************************************	– (ppm ^b )	
					Be	rtie					
A _p Upper B	0 to 29	fsl	4.3 ^d	35.3¢	42.1°	15.8d	32.7¢	15.1 ^d	295.0 ^d	697.5°	295.0d
Upper B	30 to 61	fsi	0.4d	2.2c	1.5c	0.8d	1.6°	0.8¢	9.1d	230.2¢	11.9d
Lower B	62 to 86	fsl	0.4 ^c	0.3¢	0.3c	0.5c	0.4c	0.6°	0.8c	11.4°	0.1c
Upper C	87 to 112	sil	0.3¢	0.2c	0.4¢	0.4¢	0.4¢	0.4°	0.1c	0.9¢	0.10
Lower C	113 to 133	sil	0.2c	0.5¢	0.4 ^c	0.4 ^c	0.6¢	0.5¢	0.10	0.90	0.19
			•		Gue	rnsey					
A _p Upper B	0 to 25	sil	3.1 ^d	59.6°	62.2 ^c	19.5 ^d	49.4°	21.2 ^d	176.3 ^d	1011.7¢	199.1d
	26 to 50	sic	0.6 ^d	3,0¢	1 <i>.</i> 6 ^{cd}	1.1d	2.2¢	0.8 ^d	15.4d	83.2c	19.1d
Middle B	51 to 75	sicl	1.1c	0.7c	0.7¢	0.9¢	0.5¢	0.5 ^c	1.9c	1.2¢	3.6c
Lower B	76 to 100	sic	0.6 ^c	1.2 ^c	1.4 ^c	0.5¢	0.7¢	0.7¢	0.1c	0.1c	0.1c
					Starr-	-Dyke					
A _p A ₂	0 to 11	sicl	14.8 ^d	53.7c	54.2¢	16.9 ^d	43.2c	23.1 ^d	38.3 ^d	447.9°	77.2 ^d
A.2	12 to 25	sic	1.8 ^d	9,8c	9.2¢	2.5 ^d	7.6 ^c	3.4 ^d	0.2d	130.7¢	0.3d
Upper B	26 to 50	C	1.0¢	1.1c	1.2¢	1.0c	0.9¢	0.8c	0.1¢	2.0°	0.19
Middle B	51 to 75	С	0.5¢	0.5¢	0.5¢	0.5¢	0.4c	0.4 ^c	0.10	0.1¢	0.1¢
Lower B	76 to 100	c	0.8¢	0.6°	0.7¢	1.0¢	0.5d	0.7cd	0.1¢	0.1¢	0.1¢

 a FsI = fine sandy loam, scI = sandy clay loam, sil = silt loam, sicI = silty clay loam, and c = clay.

nutrients fed will reduce the amount of nutrients excreted.

More Accurate Estimates of Animal Nutrient Requirements and Compositional Information for Feed Ingredients. Recommended nutrient requirements have been published for the various classes of pigs in a number of countries, including the U.S. (69), United Kingdom (4), Australia (78), Netherlands (12, 13), and France (42). However, these recommendations often vary and, in many cases, are only estimates for an "average" type of animal under "average" environmental conditions. Some of the variation in the estimated nutrient requirements developed by the different countries could be explained by differences in genetic potential, feeding methods, environmental conditions, ingredients used,

animal response criteria, and even the philosophy of the authors. With the exception of P, nutrient requirements are generally based on the total nutrient rather than the available nutrient. In some cases, such as NRC (69), nutrient requirements are based on corn-soybean meal diets or diets with similar availabilities of nutrients as in a corn-soybean meal diet. Also, these requirements are often based upon the use of certain feed-grade mineral sources. In pigs, the use of the "ideal protein" concept as first proposed by ARC (4) is being developed and may be incorporated in a new revision of U.S. NRC nutrient guidelines for swine. Reassessment of "ideal protein" continues as indicated by recent publications (5, 6, 9, 33). Along with the use of ideal protein is the use of ileal digestibility values of amino acids (8, 61, 88),

which allow for more precise dietary formulation when using a variety of feed ingredients.

Available nutrient requirements of animals can only be accurately met if the compositional data of feed ingredients are expressed on an available nutrient compositional basis. Thus, more knowledge of the availability of the nutrients in ingredients will be required to take the full benefit of more precisely balancing the needs of animals.

Pig type has changed during the last decade because of strong consumer pressure for leaner, heavier muscled carcasses. For example, the nutrient needs of the high lean growth lines of pigs may be greater than those of pigs with lower potential for lean growth. Daily feed intake could influence the percentage composition of nutrients required,

^bppm = mg/dm³. Multiply mg/dm³ (ppm) by 1.78 to get lb/acre.

cd Means on the same line with different superscipt letters are different (P<0.05).

TABLE 4. Comparison of Ca and P requirements and allowances recommended by universities and feed companies^a.

	Growing-	Finishing			
Mineral	20 to 50 kg 50 to 100 kg Gest		Gestation	Lactation	
	-	(%)	AL CARGO MANAGEMENT OF THE PROPERTY OF THE PRO		
Calcium					
NRC (69)	0.60	0.50	0.75	0.75	
1986 Surveya					
Universities	0.66	0.59	0.82	0.79	
Feed industry	0.74	0.63	0.95	0.93	
1988 Survey ^b					
Universities	0.64	0.58	0.84	0.84	
Feed industry	0.73	0.62	0.93	0.90	
Phosphorus					
NRC (69)	0.50	0.40	0.60	0.60	
1986 Surveya					
Universities (n=25)	0.55	0.49	0.66	0.63	
Feed industry (n=35)	0.60	0.52	0.77	0.76	
1988 Survey ^b					
Universities (n=7)	0.54	0.49	0.68	0.68	
Feed industry (n=21)	0.60	0.52	0.76	0.74	

and it may be necessary to increase the percentage composition if pigs eat less than the predicted feed intakes. However, most of this information must be developed and tested. Also, the requirements of barrows, gilts and boars are probably different, especially during the finishing phase of production.

Feeding for Optimal Rather than Maximum Performance. In the future, diets can be formulated so that animals perform at slightly less than maximum because the benefit of adding additional units of a nutrient to achieve maximum performance produces benefits at a decreasing rate. This practice increases nutrient costs per unit of performance improvement at an increasing rate as the animal approaches maximum performance. As the maximum response is reached, or as the performance curve reaches a plateau, a greater amount of the nutrient is required to get a change in the response (Figure 1). In a series of three trials, Combs et al. (16) fit

asymptotic models of the effect of total Ca+P intake (varied above and below NRC recommended requirement) and days on test (weaning to market). Diminishing returns in response to Ca-P input are shown in Figure 2 for performance measurements. This principle of diminishing returns in response to nutrient input is not new. Heady et al. (38) reported that in 14 of 16 yr, swine diets formulated using the diminishing return concept would have produced greater profits than diets formulated for maximum gain. Diminishing returns were also observed when Kornegay (52) fit asymptotic models to combined data from a number of research trials conducted from 1969 to 1986 to evaluate the Ca+P needs of growing-finishing swine. More recently, Gahl et al. (34) reported that the most economical daily weight gain does not necessarily occur when daily weight gain is maximized and would change as feedstuffs and input costs change. Diminishing returns for N gain of

pigs fed six levels of lysine from three supplemental sources (Figure 3) has been demonstrated by Gahl et al. (34); their paper includes a good discussion of the diminishing returns in response to nutrient input.

Another consideration in evaluating nutrient addition is the response criteria measured. It is well known that the amount of P required to maximize growth is less than the amount required to maximize bone integrity (69). Perhaps, from the perspective of animal well-being, attempts to maximize bone integrity are most important. But from an environmental perspective, attempts to maximize bone integrity results in excessive excretion of P (20). Combs et al. (17) observed that growingfinishing pigs fed diets that provided NRC (69) requirements for Ca and P maintained approximately 100% of maximum growth and feed efficiency, but approximately 120 to 130% of the NRC (69) Ca and P requirement was required to maximize bone development. Although maximizing bone development is not necessary for the production of a market pig, a more difficult question is how much bone development is required to prevent damage to the carcass during mechanical processing that occurs during slaughter. As the

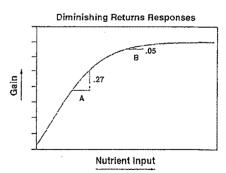



Figure 1. Example of diminishing returns for nutrient inputs as the level of nutrient fed increases. Adapted from Crenshaw et al. (21). At point A, one unit of input produces 0.27 units of gain, whereas, at point B, one unit of input produces 0.05 units of gain.

TABLE 5. Mineral concentrations in sow and finishing swine dietsa.

Sow

			************************************
Requirement NRC (69)	Range	Median ^b	Median requirement
0.75	0.62 to 2.01	1.21	1.61
0.60	0.45 to 1.17	0.84	1.40
0.15	0.13 to 0.45	0.22	1.47
0.04	0.12 to 0.44	0.21	5.25
0.20	0.43 to 1.15	0.78	3.90
5	12 to 222	22	4.40
80	162 to 698	376	4.70
10	28 to 203	77	7.70
50	79 to 497	167	3.34
	0.75 0.60 0.15 0.04 0.20 5 80	NRC (69)     Range       0.75     0.62 to 2.01       0.60     0.45 to 1.17       0.15     0.13 to 0.45       0.04     0.12 to 0.44       0.20     0.43 to 1.15       5     12 to 222       80     162 to 698       10     28 to 203	NRC (69)         Range         Medianb           0.75         0.62 to 2.01         1.21           0.60         0.45 to 1.17         0.84           0.15         0.13 to 0.45         0.22           0.04         0.12 to 0.44         0.21           0.20         0.43 to 1.15         0.78           5         12 to 222         22           80         162 to 698         376           10         28 to 203         77

Finishing swine

Minerals	Requirement	Range	Median ^b	Median requirement
Calcium, %	0.50	0.57 to 1.38	0.96	1.92
Phosphorus, %	0.40	0.45 to 0.78	0.62	1.55
Sodium, %	0.10	0.13 to 0.29	0.19	1.90
Magnesium, %	0.04	0.13 to 0.21	0.16	4.00
Potassium, %	0.17	0.48 to 0.93	0.72	4.23
Copper, ppm	3	9 to 281	20	6.67
lron, ppm	40	131 to 503	311	7.76
Manganese, ppm	2	37 to 160	62	31.0
Zinc, ppm	50	103 to 205	149	2.98

^aResults are from analyses conducted recently at the North Carolina Feed Testing Laboratory (n=26 for sow and n=17 for finishing diets). Adapted from Spears (85). ^bThe median level for each mineral indicates that 50% of the sample analyzed were below and 50% were above the median value.

cost of disposing of P increases, the Ca and P levels fed will decrease. In the future, nutritionists will formulate for 95 to 98% of maximum response rather than trying to approach 100% of maximum response. Therefore, the industry will feed below rather than above the nutrient requirements of animals to maximize growth and bone development. How much of a safety margin will be desirable will depend upon the availability of accurate knowledge of the requirements and compositional information for the feedstuffs.

Use of Crystalline Amino Acids and High Quality Protein. The concept of ideal protein and the use of crystalline amino acids are now

widely accepted. The use of crystalline amino acids in nonruminant feeding can substantially reduce the amount of N excreted without affecting performance (23, 41, 49, 89). Henry and Dourmad (41) and Van der Honing et al. (89) reported that N excretion can be reduced 15 to 20% when crude protein levels are reduced two percentage units and crystalline amino acids are added to correct amino acid balance. Cromwell (23) reported that the crude protein level of swine diets can be reduced about two percentage units (i.e., 14 vs 16% crude protein) by using crystalline lysine; this can result in a 22% decrease in N excreted (Table 6). The crude protein

level of corn-soybean meal diets can be reduced about four percentage units (i.e., 10 vs 14% crude protein) by using four amino acids (lysine. threonine, tryptophan, and methionine); this can result in a 41% decrease in N excreted. After summarizing the results of 10 studies, Kerr and Easter (49) suggested that for each 1 percentage unit reduction in dietary protein combined with crystalline amino acid supplementation, total N losses (fecal and urinary) could be reduced approximately 8%. The use of low quality protein sources such as hydrolyzed hog hair meal, and high levels of crude fiber increase N excretion (50, 51). Also, as nonruminant animals are fed more precisely to meet their amino acid needs, feed efficiency will be improved, which can further reduce N excreted as well as the excretion of other nutrients.

Improve the Availability of P and Some Other Minerals. The amount of P excreted can be significantly decreased, if the availability of the bound (or unavailable) P, known as phytate P, in plants is improved. It has been demonstrated in pigs and poultry that the use of an exogenous enzyme, phytase, can improve plant P availability, thereby reducing P excretion. For example, in a corn soybean meal diet, commonly used for pigs and poultry, two-thirds of the P is bound and is unavailable (24). However, by using the appropriate amount of microbial phytase, 20 to 50% of the bound P can be released and made available to the animal. Thus, the amount of inorganic P that must be added to meet the P requirement is reduced. If total dietary P levels are decreased, then the amount of P excreted can be decreased 20 to 50% (27, 46, 47). Estimates of reductions in fecal P resulting from different levels of supplemental phytase representing 25 studies and 17 references (26, 29, 30, 31, 37, 39, 55, 60, 63, 66, 67, 68, 72, 82, 83, 93, 96) were used in a data set (Kornegay, unpublished data) to determine the relationship between supplemental phytase levels and fecal P reduction.

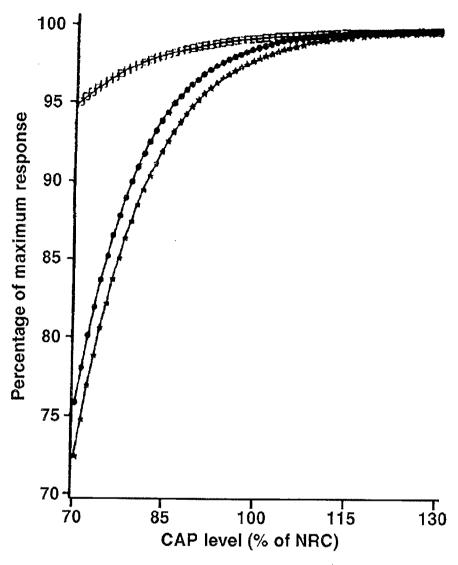



Figure 2. Percentage of maximum average daily gain (*) average daily feed intake (•) and gain: feed ratio ( $\square$ ) associated with each increase in average daily Ca and P (CAP) intake for growing-finishing pigs. Taken from Combs et al. (16).

The model included study as a fixed effect and the linear and quadratic effects of phytase level (units per kilogram). The quadratic effect was not significant (P<0.97) and was removed from the model used to derive the following equation: Y = 25.57 + 0.0106X,  $R^2 = 0.95$ , where Y equals the fecal P reduction (percentage of adequate P level), and X = supplemental phytase level (units per kilogram). Based on this equation, 500 U/kg of dietary phytase would result in a 30.9% decrease in fecal P,

which is higher than 21.5% observed in a recent growing-finishing study (37). Assuming that a 21% reduction in P excretion results in a similar reduction in P content of land applied manure, then 21% less application area would be needed under a given P loading rate.

The nutritional, environmental, and economic considerations for using phytase in pig and poultry diets were recently reviewed (53). Based on response surface equations and nonlinear and linear equations

calculated from the data, it was concluded that the magnitude of the response to microbial phytase is influenced by the dietary level of available P (and total P including phytate P), the amount of phytase activity added, and the Ca to available P ratio. Currently in the U.S., based on replacement values of inorganic P by microbial phytase calculated from nonlinear and linear equations, the cost of adding phytase range from one to three times the cost of an equivalent amount of inorganic P (53). This cost, however, does not include any cost for P disposal. Based on a representative feeder-to-finish swine farm generated from the Duplin County, NC Swine Database, Zhu et al. (99) estimated that for a 20% reduction in P excretion, with the inclusion of 500 U/kg of phytase, the savings in manure disposal cost would be \$0.42 per hog with a net advantage of \$0.16 per hog for using phytase. A genetically engineered microbial phytase is now being marketed in the several countries, including the U.S. The addition of microbial phytase to high phytate diets also releases Ca (57, 77, 78, 92). Zn (10, 60, 96), and some amino acids (48, 97) that may be bound by the phytate complex.

Use of Phase Feeding and Separate-Sex Feeding. The requirement of animals for most available amino acids and minerals, expressed as a percentage of the total diet, decreases as the animals grow heavier. Phase feeding, as some have described it, is a way to more precisely meet the nutrient needs of growing and finishing pigs. This concept applied to dietary crude protein is illustrated in Table 7 and Figure 4. It is known that nutrient requirements change (perhaps weekly) as pigs grow; if a producer is able to change the formulation of the diet as the nutrient requirements change, then the nutrient needs of the animal can be met more precisely, thereby, reducing the total quantity of nutrients excreted. Henry and Dourmad (41) reported that N excretion could be reduced approximately 15% when

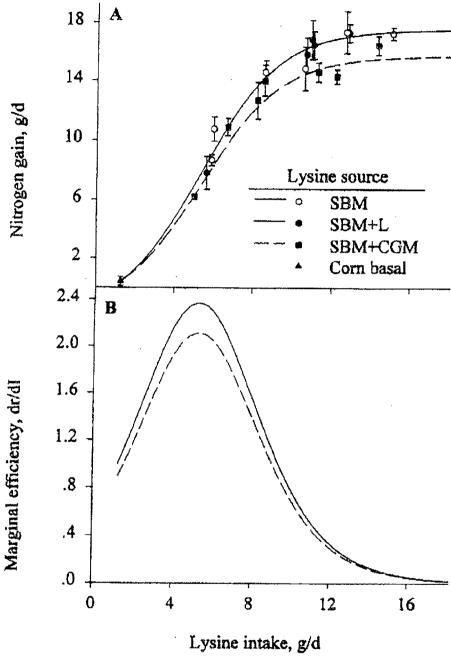



Figure 3. Diminishing returns in nitrogen gain (grams per day) of pigs fed diets with graded concentrations of lysine. Panel A: Predicted curves estimated using a logistic equation. Data points  $\pm$  SE (n=4) for each treatment group. Panel B: Marginal efficiency of nitrogen gain with respect to lysine intake calculated as the first derivative of the predicted curves in Panel A. Marginal efficiency is defined as the incremental response in nitrogen gain to an incremental unit of lysine intake. Taken from Gahl et al. (34).

the feeding of 14% CP diet was initiated at 60 kg body weight, rather than the continuous feeding of 16% CP grower diet to market weight. In a further study, Chauvel and Ganier

(14) reported a 9% reduction in N excretion between a multiphase system in which the proportions of an 18.9 and 14.9% CP (4.1 and 2.6 g digestible lysine/Mcal net energy,

respectively) were changed weekly from 24 to 107 kg vs a two-phase system, in which an 18.1% CP (3.6 g lysine/Mcal net energy) diet was fed to 66 kg and a 16.1% CP (3.1 g lysine/Mcal net energy) diet was fed to 107 kg. Also, the excretion of P and other minerals would be reduced a similar amount, if the finishing diet contained a lower level of these minerals. Henry and Dourmad (41) suggested that this change could be made gradually by changing the ratio in which a "high" protein and P (and other minerals) grower diet is mixed with a "low" protein and P (and other minerals) finishing diet.

Separate-sex or split-sex feeding of swine can further improve feed efficiency. It is well established that gilts consume less feed on an ad libitum basis and require greater diet nutrient density than barrows (25). By penning and feeding gilts and barrows separately, producers can more precisely formulate diets for specific sexes and avoid overfortification and excessive excretion of nutrients. Furthermore, increased fat deposition and decreased rate of lean deposition occurs at an earlier growth stage in barrows than in gilts; therefore, dietary protein and amino acid levels can be more precisely changed at different growth stages for each sex. Under such precise feeding conditions, the total quantity of N and other minerals fed and excreted can be reduced.

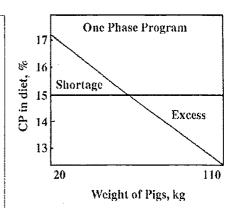
Reduction of Feed Waste, Another simple, yet sometimes difficult and overlooked way to improve feed efficiency is to improve design and operation of feeders, so that feed waste is minimized. Studies have shown that feed waste accounts for up to 3 to 8% of the feed fed. The impact that feed waste has on feed efficiency and income loss, as well as the amount of N and P excreted in pigs is shown in Table 8 (36). A 5% level of feed waste can result in an income loss of \$1.77 per market pig depending on market condition, and an additional 327 g of N and 82 g of P excreted per pig. The use of proper feeder designs, regular maintenance,

TABLE 6. Theoretical model of the effects of reducing dietary protein and supplementing with amino acids on N excretion by 90-kg finishing pigs^a.

N balance	14 % CP	12% CP + Lys	10% CP + Lys + Thr + Trp + Met
N intake, g/d	67	58	50
N digested and absorbed, g/d	60	51	43
N excreted in feces, g/d	7	7	7
N retained, g/đ	26	26	26
N excreted in urine, g/d	34	25	1 <i>7</i>
N excreted, total, g/d	41	32	24
Reduction in N excretion, %	***	22	41

^aAssumes an intake of 3,000 g/d, a growth rate of 900 g/d, a carcass lean tissue gain of 400 g/d, a carcass protein gain of 100 g/d (or 16 g of N/d), and that carcass N retention represents 60% of the total N retention. Adapted from Cromwell (23).

TABLE 7. Effect of feeding strategy during the growing-finishing period (25 to 105 kg) on N output^a.


Item	Single-feed 17% CP	Two-feeds ^b 17-15% CP	Three-feeds ^c 17-15-13% CP
N output, g/d	31.9	29.0	26.7
Percentage of two-feed strategy	110	100	92

^aAdapted from Henry and Dourmad (40).

TABLE 8. Feed waste impacts on nutrient management^a.

Feed waste	Feed loss per pig	Income loss per pig	Feed N waste per pig	Feed P waste per pig
(%)	(kg)	(\$)	(g	)
1	2.8	0.36	63	18
3	8.2	1.07	195	50
5	13.6	1.77	327	82
7	19.1	2.48	459	114

^aBased on growing-finishing pigs from 22.7 to 113.5 kg body weight, 3:1 feed:gain ratio, 2.4% N and 0.60% P in the diet and \$0.13/kg diet cost. Adapted from Harper (36).



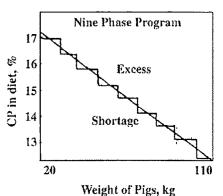



Figure 4. Example of a one phase and a nine phase feeding program for the growing and finishing phase.

and careful adjustment of feeders is essential for the prevention of excessive feed waste.

#### **Conclusions**

As swine production units have become larger and more intensive, the need for environmentally sound methods to use and dispose of excreted nutrients has increased. Safe and effective disposal of waste nutrients in swine production depends on reducing the quantity of nutrients excreted by the animals coupled with recycling of the excess nutrients in a manner that is not harmful to the environment. In the future, swine feed formulators must focus on optimizing swine performance while reducing or minimizing nutrient excretion. This review describes existing and emerging

bCrude protein changed at 55 kg.

Crude protein changed at 50 and 75 kg.

technologies that would allow this goal to be achieved. Some individual technologies will have a greater impact on reduced nutrient excretion than others. Furthermore, employing these technologies together in an environmental nutrition approach to swine feeding has the potential to significantly reduce excess nutrients for disposal in swine production.



#### Literature Cited

- 1. Adeola, O. 1995. Digestive utilization of minerals by weanling pigs fed copper-and phytase-supplemented diets. Can. J. Anim. Sci. 75:603.
- 2. Adeola, O., B. V. Lawrence, A. L. Sutton, and T. R. Cline. 1995. Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci. 73:3384.
- 3. Apgar, G. A., and E. T. Kornegay. 1996. Mineral balance of finishing pigs fed copper sulfate or a copper lysine complex at growth stimulating levels. J. Anim. Sci. 74:1594.
- 4. ARC. 1981. The Nutrient Requirements for Farm Livestock. 3. Pigs. Agricultural Research Council, London, UK.
- 5. Baker, D. H. 1996. Advances in amino acid nutrition and metabolism of swine and poultry. In Nutrient Management of Food Animals to Enhance and Protect the Environment. E. T. Kornegay (Ed.). p 51. CRC Press, Inc., Boca Raton, FL.
- Baker, H., and T. K. Chung. 1992. Ideal protein for swine and poultry. Kyowa Hakko Technical Review-4. Nutri-Quest Inc., Chesterfield, MO.
- 7. Barker, J. C., and J. P. Zublena. 1995. Livestock manure nutrient assessment in North Carolina. In Proc. of 7th Int. Symp. on Agric. and Food Processing Wastes. Sponsored by ASAE, Chicago, IL.
- 8. Batterham, E. S. 1994a. Ileal digestibilities of amino acids in feedstuffs for pigs. In Amino Acids in Farm Animal Nutrition. J.P.F. D'Mello (Ed.). p 113. CAB International, Wallingford, Oxon, UK.
- 9. Batterham, E. S. 1994b. Protein and energy relationships for growing pigs. In Principles of Pig Science. D.J.A. Cole, J. Wiseman, and M. A. Varley (Eds.). p 107. University Press, Nottingham, Oxon, UK.
- Biehl, R. R., D. H. Baker, and H. F. DeLuca.
   1995. I -Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and

- manganese in chicks fed soy-based diets. J. Nutr. 125:2407.
- 11. Bruce, J.A.M., and E Sundstael. 1995. The effect of microbial phytase in diets for pigs on apparent ileal and faecal digestibility, pH and flow of digesta measurements in growing pigs fed a high-fibre diet. Can. J. Anim. Sci. 75:121
- 12. Centraal Veevoederbureau (CVB). 1990. Revised table on available phosphorus in feedstuffs for pigs. Centraal Veevoederbureau, Lelystad, The Netherlands (in Dutch).
- 13. Centraal Veevoederbureau (CVB). 1991. Table of feedstuffs. Information about composition, digestibility and feeding value. Centraal Veevoederbureau, Lelystad, The Netherlands (in Dutch).
- 14. Chauvel, J., and R. Granier. 1996. Effet de l'alimentation multiphase sur la croissance et les rejets azotes du porc charcutier. J. Rec. Porc. France 28:249.
- 15. Coffey, M. T. 1992. An industry perspective on environmental and waste management issues: challenge for the feed industry. Georgia Nutr. Conf., p 144. Athens, GA.
- 16. Combs, N. R., E. T. Kornegay, M. D. Lindemann, and D. R. Notter. 1991a. Calcium and phosphorus requirement of swine from weaning to market weight: 1. Development of response curves for performance. J. Anim. Sci. 69:673.
- 17. Combs, N. R., Kornegay, E. T., Lindemann, M. D., Notter, D. R., Wilson, J. H., and Mason, J. P. 1991b. Calcium and phosphorus requirement of swine from weaning to market weight: II. Development of response curves for bone criteria and comparison of bending and shear bone testing. J. Anim. Sci. 69:682.
- 18. Coppoolse, J., A. M. van Vuuren, J., Huisman, W.M.M.A. Janssen., A. W. Jongbloed, N. P. Lenis, P.C.M. Simons. 1990. Excretion of nitrogen, phosphorus and potassium by livestock, now and tomorrow. DLO, Wageningen, The Netherlands.
- 19. Council for Agricultural Science and Technology. 1995. Integrated Animal Waste Management Task Force Report No. 128. Council for Agricultural Science and Technology, Ames, IA.
- 20. Crenshaw, T. D., and J. C. Johanson. 1995. Nutritional strategies for waste reduction management: Minerals. In New Horizons In Anim. Nutr. and Health. J. B. Longenecker and J. W. Spears (Eds.). The Institute of Nutrition of the University of North Carolina, Chapel Hill, Nov. 7 and 8, Chapel Hill, NC.
- 21. Crenshaw, T. D., M. J. Gahl, K. P. Blemings, and N. J. Benevenga. 1994. Swine feeding programs optimum performance and economic considerations. In Tenth Annual Carolina Swine Nutr. Conf., Nov. 10., p 21. Raleigh, NC.
- 22. Cromwell, G. L. 1989. An evaluation of the requirements and biological availability of calcium and phosphorus for swine. In Feed Phosphates in Monogastric Nutrition,

- Texasgulf Nutrition Symposium, May 23, Raleigh, NC.
- 23. Cromwell, G. L. 1994. Feeding strategies urged as techniques to decrease pollution from hog manure. Feedstuffs, July 25, p 9.
- 24. Cromwell, G. L., and R. D. Coffey. 1991. Phosphorus a key essential nutrient, yet a possible major pollutant its central role in animal nutrition. In Biotechnology in the Feed Industry. T. P. Lysons (Ed.). p 133. Alltech Technical Publications, Nicholasville, KY.
- 25. Cromwell, G. L., T. R. Cline, J. D. Crenshaw, T. D. Crenshaw, R. C. Ewan, C. R. Hamilton, A. J. Lewis, D. C. Mahan, E. R. Miller, J. E. Pettigrew, L. F. Tribble, and T. L. Veum. 1993a. The dietary protein and(or) lysine requirements of barrows and gilts. J. Anim. Sci. 71:1510.
- 26. Cromwell, G. L., R. D. Coffey, G. R. Parker, H. J. Monegue, and J. H. Randolph. 1995. Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J. Anim. Sci. 73:2000.
- 27. Cromwell, G. l., T. S. Stahly, R. D. Coffey, H. J. Monegue, and J. H. Randolph, 1993b. Efficacy of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs. J. Anim. Sci. 71:1831.
- 28. de Lange, C.F.M. 1994. Formulation of diets to minimize the contribution of livestock to environmental pollution. American Feed Industry Association Nutrition Council Symp., Nov. 10–11, St. Louis, MO.
- 29. Dungelhoef, M., M. Rodehutscord, H. Spiekers, and E. Pfeffer. 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in matze, wheat and triticale to pigs. Anim. Feed Sci. Technol. 49:1.
- 30. Eeckhout, W., and M. De Paepe. 1992a. Influence d'une phytase microbienne sur la digestibilite apparente du phosphore d'aliments pour porcelets. Rev. L'Agric. 45:183.
- 31. Eeckhout, W. and M. De Paepe. 1992b. Phytase de ble, phytase microbienne et digestibilite apparente du phosphore d'un aliment simple pour porcelets. Rev. L'Agric. 45:195.
- 32. Everts, H. 1994. Nitrogen and energy metabolism of sows during several reproductive cycles in relation to nitrogen intake. Doctoral Dissertation, University of Wageningen, The Netherlands.
- 33. Fuller, M. E., R. MacWilliam, T. C. Wang, and L. R. Giles. 1989. The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. Br. J. Nutr. 62:255.
- 34. Gahl, M. J., T. D. Crenshaw, and N. J. Benevenga. 1995. Diminishing returns in weight, nitrogen, and lysine gain of pigs fed six levels of lysine from three supplemental sources. J. Anim. Sci. 73:3177.

- 35. Hacker, R. R., and Z. Du. 1993. Livestock pollution and politics. In Nitrogen flow in pig production and environmental consequences. M.W.A. Verstegen, L. A. den Hartog, G.J.M. van Kempen, and C.J.H.M. Metz. EAAP Publ. 69. p 3. Pudoc Scientific Publishers, Wageningen, The Netherlands.
- 36. Harper, A. F. 1994. Feeding technologies to reduce excess nutrients in swine diets. In Proc. Meeting the Challenge of Environmental Management on Hog Farms. Second Annual Virginia Tech Swine Producers Seminar. August 4. p 44. Carson, VA.
- 37. Harper, A. F., E. T. Kornegay, and T. C. Schell. 1997. Phytase supplementation of low phosphorus growing-finishing pig diets improves performance, phosphorus digestibility and bone mineralization, and reduces phosphorus excretion. J. Anim. Sci. 75:(in press).
- 38. Heady, E. O., R. Woodworth, D. R. Catron, and G. C. Ashton. 1954. New procedures in estimating feed substitution rates and in determining economic efficiency in pork production. Agric. Exp. Sta. Res. Bull. p 893. Iowa State College, Ames, IA.
- 39. Helander, E. 1995. Efficiency of microbial phytases on phosphorus utilization in growing-finishing pigs. Doctoral Dissertation, University of Helsinki, Helsinki, Finland.
- 40. Henry, Y., and J. Y. Dourmad. 1992. Protein nutrition and N pollution. Feed Mix. (May):25.
- 41. Henry, Y., and J. Y. Dourmad. 1993. Feeding strategies for minimizing nitrogen outputs in pigs. In Nitrogen flow in pig production and environmental consequences. Proc. First Int. Symp. on Nitrogen flow in Pig Production and Environmental Consequences. EAAP Publication No. 69. p 137.
- 42. INRA. 1984. L'alimentation des animaux monogastriques, porc, lapin, volailles. Institut National De La Recherche Agronomique, Paris, France.
- 43. Jongbloed, A. W. 1991. Developments in the production and composition in manure from pigs and poultry. In Mest & Milieu in 2000. H.A.C. Verkerk (Ed.). Dienst Landbouwkundig Onderzoek, Wageningen, The Netherlands (in Dutch).
- 44. Jongbloed, A. W., P. A. Kemme, Z. Mroz, and R. ten Bruggencate. 1995a. Apparent total tract digestibility of organic matter, N, Ca, Mg, and P in growing pigs as affected by levels of Ca, microbial phytase and phytate. Proc. 2nd European Symp. on Feed Enzymes. p 198. Noordwijkerhout, The Netherlands.
- 45. Jongbloed, A. W., P. A. Kemme, Z. Mroz, M. Makinen, and A. K. Kies. 1995b. Effect of phytate, phytase and lactic acid on faecal digestibility of ash and some minerals in pigs. Manipulating Pig Production V:191.
- 46. Jongbloed, A. W., P. A. Kemme, and Z. Mroz. 1991. Effect of supplementary microbial phytase in diets for pigs on digestibility of P and phytic acid in different sections of the alimentary tract. J. Anim. Sci. 69(Suppl. 1):385.

- 47. Jongbloed, A. W., Z. Mroz, and P. A. Kemme. 1992. The effect of supplementary *Aspergillus niger* phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract. J. Anim. Sci. 70:1159.
- 48. Kemme, P. A., A. W. Jongbloed, Z. Mroz, and M. Makinen. 1995. Apparent ileal digestibility of protein and amino acids from a maize-soybean meal diet with or without extrinsic phytate and phytase in pigs. Abstract presented at the Int. Symp. on Nutr. Management of Food Animals to Enhance the Environment, June 4-7, Blacksburg, VA.
- 49. Kerr, B. J., and R. A. Easter. 1995. Effect of feeding reduced protein, amino acid supplemented diets on nitrogen and energy balance in grower pigs. J. Anim. Sci. 73:3000.
- 50. Kornegay, E. T. 1978a. Feeding value and digestibility of soybean hulls for swine. J. Anim. Sci. 47:1272.
- 51. Kornegay, E. T. 1978b. Protein digestibility of hydrolyzed hog hair meal for swine. Anim. Feed Sci. Technol. 3:323.
- 52. Kornegay, E. T. 1986. Calcium and phosphorus in swine nutrition. In Calcium and Phosphorus in Swine Nutrition. p 1. National Feed Ingredients Assoc., Des Moines, IA.
- 53. Kornegay, E. T. 1996. Nutritional, environmental and economical considerations for using phytase in pig and poultry diets. In Nutrient Management of Food Animals to Enhance and Protect the Environment. E. T. Kornegay (Ed.). p 277. CRC Press, Inc., Boca Raton, FL.
- 54. Kornegay, E. T. and B. Kite. 1983. Phosphorus in swine. VI. Utilization of nitrogen, calcium and performance of gravid gilts fed two dietary phosphorus levels for five parities. J. Anim. Sci. 57:1463.
- 55. Kornegay, E. T. and H. Qian. 1996. Replacement of inorganic phosphorus by microbial phytase for young pigs fed a corn soybean meal diet. Br. J. Nutr. 76:563.
- 56. Kornegay, E. T., M. R. Holland, K. E. Webb, Jr., K. P. Bovard, and J. D. Hedges. 1977. Nutrient characterization of swine fecal waste and utilization of these nutrients by swine. J. Anim. Sci. 44:608.
- 57. Kornegay, E. T., J. S. Radcliffe, and D. M. Denbow. 1996. Influence of Natuphos® Phytase on Calcium Bioavailability in Plant Ingredients and Development of Calcium Equivalency Values for Swine and Poultry. In Phytase in Animal Nutrition and Waste Management. M. B. Coelho and E. T. Kornegay (Eds.). p 419. BASF Corp., Mount Olive, NJ.
- 58. Lantzsch, H.-J. and W. Drochner. 1995. Efficacy of microbial phytase (A. Niger) on apparent absorption and retention of some minerals in breeding sows. Proc. 2nd European Symp. on Feed Enzymes. p 300. Noordwijkerhout, The Netherlands.
- 59. Latimer, P., and A. Pointillart. 1993. Effects of three levels of dietary phosphorus

- (.4, .5, .6% P) on performance, carcass, traits, bone mineralization and excreted phosphorus of growing-finishing swine. In 25th French Swine Days Report. 25:52.
- 60. Lei, X. G., P. Ku, E. R. Miller, D. E. Ullrey, and M. T. Yokoyama. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123:1117.
- 61. Lenis, N. P. 1992. Digestible amino acids for pigs. Assessment of requirements on ileal digestible basis. Pig News and Information 13, 31N.
- 62. Lindemann, M. D., E. T. Kornegay, and R. J. Moore. 1986. Digestibility and feeding value of peanut hulls for swine. J. Anim. Sci. 62:412.
- 63. Liu, J., D. W. Bollinger, D. R. Ledoux, and T. L. Veum. 1996. Effects of dietary calcium concentrations on performance and bone characteristics of growing-finishing pigs fed low phosphorus corn-soybean meal diets supplemented with microbial phytase. J. Anim. Sci. 74(Suppl. 1):180. (Abs.).
- 64. Moore, R. J., E. T. Kornegay, and M. D. Lindemann. 1986. Effect of salinomycin on nutrient absorption and retention by growing pigs fed corn-soybean meal diets with or without oat hulls or wheat bran. Can. J. Anim. Sci. 66:257.
- 65. Mueller, J. P., J. P. Zublena, M. H. Poore, J. C. Barker, and J. T. Green. 1994. Managing pasture and hay fields receiving nutrients from anaerobic swine waste lagoons, N.C. Cooperative Ext. Service, AG-506.
- 66. Näsi, M. 1990. Microbial phytase supplementation for improving availability of plant phosphorus in the diet of the growing pig. J. Agric. Sci. Finl. 62:435.
- 67. Näsi, M. and E. Helander. 1994. Effects of microbial phytase supplementation and soaking of barley -soybean meal on availability of plant phosphorus for growing pigs. Sect. A. Anim. Sci. Acta Agric. Scand. 44:79.
- 68. Näsi, J. M., J. T. Piironen, and K. H. Partanen. 1995. Interaction between phytase and acid phosphatase activities in degradation of phytates of maize and barley based pig diets. Proc. 2nd European Symp. on Feed Enzymes. p 219. Noordwijkerhout, The Netherlands.
- 69. NRC. 1988. Nutrient requirements of swine. (9th Rev. Ed.). National Research Council. National Academy Press, Washington, DC.
- 70. Overfield, J. J., J. Krug, and R. Adkins. 1986. Swine Nutrient Requirement Survey. A report prepared for the Swine Committee of the AFIA Nutrition Council.
- 71. Pallauf, V. J., D. Hohler, and G. Rimbach. 1992a. Effect of microbial phytase supplementation to a maize-soya-diet on the apparent absorption on Mg. Fe, Cu, Mn and Zn and parameters of Zn-status in piglets. J. Anim. Physiol. Anim. Nutr. 68:1.
- 72. Pallauf, V. J., D. Holer, G. Rimbach, and H. Neusser. 1992b. Effect of microbial phytase

- supplementation to a maize-soy-diet on the apparent absorption of phosphorus and calcium in piglets. J. Anim. Physiol. a. Anim. Nutr. 67:30.
- 73. Pallauf, J., G. Rimbach, S. Pippig, B. Schindler, and E. Most. 1994a. Effect of phytase supplementation to a phytate-rich diet based on wheat, barley and soya on the bioavailability of dietary phosphorus, calcium, magnesium, zinc and protein in piglets. Agribio. Res. 47:39.
- 74. Pallauf, J., G. Rimbach, S. Pippig, B. Schindler, D. Hohler and E. Most. 1994b. Dietary effect of phytogenic phytase and an addition of microbial phytase to a diet based on field beans, wheat, peas and barley on the utilization of phosphorus, calcium, magnesium, zinc and protein in piglets. Z. Ernahrungswiss 33:128.
- 75. Pierzynski, G. M., J. T. Sims, and G. F. Vance. 1994. Soils and Environmental Quality. Lewis Publishers, CRC Press, Boca Raton, FL.
- 76. Qian, H., E. T. Kornegay, and D. E. Conner, Jr. 1996. Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. J. Anim. Sci. 74:1288.
- 77. Radcliffe, J. S., E. T. Kornegay, and D. E. Conner, Jr. 1995. The effect of phytase on calcium release in weanling pigs fed cornsoybean meal diets. J. Anim. Sci. 73(Suppl. 1):173.
- 78. SCA. 1987. Feeding standards for Australian livestock. V. Pigs. Editorial and publishing unit, CSIRO, East Melbourne, Australia.
- 79. Sharpley, A. N. 1995. Dependence of runoff phosphorus on extractable soil phosphorus. J. Environ. Qual. 24:920.
- 80. Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, and K. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 23:437.
- 81. Sharpley, A. N., T. C. Daniel, and D. R. Edwards. 1993. Phosphorus movement in the landscape. J. Prod. Agric. 6:492.

- 82. Shih, B.-L., and A.-L. Hsu. 1997. Effects of dietary phytase supplementation on the growth performance, bone mechanical properties and phosphorus excretion of finishing pigs. J. Taiwan Livestock Res. 30 (In press).
- 83. Simons, P.C.M., H.A.J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, M.G.E. Wolters, R. F. Beudeker, and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525.
- 84. Sims, J. T. 1993. Environmental soil testing for phosphorus. J. Prod. Agric. 6: 501.
- 85. Spears, J. W. 1996. Optimizing mineral levels and sources for farm animals. In Nutrient Management of Food Animals to Enhance and Protect the Environment. E. T. Kornegay (Ed.). p 259. CRC Press, Inc., Boca Raton, FL.
- 86. Sweeten, J. M. 1992. Livestock and Poultry Waste Management: A National Overview. In National Livestock, Poultry and Aquaculture Waste Management. J. Blake, J. Donald, and W. Magette (Ed.). p 4. Amer. Soc. Agric. Eng., St. Joseph, Ml.
- 87. Swinkels, J.W.G.M., E. T. Kornegay, and M.W.A. Verstegen. 1994. Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr. Res. Rev. 7:129.
- 88. Tanksley, T. D., Jr., and D. A. Knabe. 1984. Ileal digestibilities of amino acids in pig feeds and their use in formulating diets. In Recent Advances in Animal Nutrition—1984. p 75. Butterworths, London, UK.
- 89. Van der Honing, Y., A. W. Jongbloed, and N. P. Lenis, 1993. Nutrition management to reduce environmental pollution by pigs. VII World Conf. on Anim. Prod., Edmonton, AB, Canada. (Abs.).
- 90. Van Horn, H. H. 1992. Achieving environmental balance with manure and cropping systems. Georgia Nutr. Conf. p 110. Athens, GA.
- 91. Verstegen, M. 1995. Strategies in the Netherlands for animal waste reduction management. In New Horizons in Animal Nutrition and Health. J. B. Longenecker and J.

- W. Spears (Eds.). p 79. The Institute of Nutrition, The University of North Carolina, Chapel Hill, NC.
- 92. Veum, T. L. 1996a. Influence of high dietary calcium or calcium:phosphorus ratios on the effectiveness of microbial phytase for swine. In Phytase in Animal Nutrition and Waste Management. M. B. Coellio and E. T. Kornegay (Eds.). p 381. BASF Corp., Mount Olive, NJ.
- 93. Veum, T. I. 1996b. Use of microbial phytase in corn-soybean meal and grain sorghum-canola meal diets for growing-finishing swine. Phytase in Animal Nutrition and Waste Management. InM. B. Coehio and E. T. Kornegay (Eds.). p 365. BASF Corp., Mount Olive, NJ.
- 94. Vipperman, P. E., E. R. Peo, and P. J. Cunningham. 1974. Effect of dietary calcium, phosphorus and nitrogen balance in swine. J. Anim. Sci. 38:758.
- 95. Walz, O. P., H. J. Ingelmann, and J. Pallauf. 1994. Digestibility and retention of protein and minerals during the fattening of pigs fed diets low in protein and phosphorus with supplementation of amino acids and phytase. In VI International Symposium on Digestive Physiology in Pigs. Bad Doberan, Proc., Vol. II:4.
- 96. Yi, Z., E. T. Kornegay, and D. M. Denbow. 1996a. Supplemental microbial phytase improves zinc utilization in broilers. Poultry Sci. 75: 540.
- 97. Yi, Z., E. T. Kornegay, and D. M. Denbow. 1996b. Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed cornsoybean diets. Poultry Sci. 75: 979.
- 98. Yi, Z., E. T. Kornegay, M. D. Lindemann, V. Ravindran, and J. H. Wilson. 1996c. Effectiveness of Natuphos® phytase in improving the bioavailabilities of phosphorus and other nutrients in soybean meal-based semipurified diets for young pigs. J. Anim. Sci. 74:1601.
- 99. Zhu, M., D. Bosch, and E. T. Kornegay. 1996. The potential impact of microbial phytase on poultry and swine manure disposal costs in the United States. II. Swine. Virginia Tech Anim. and Poultry Sci. Res. Rpt. 12:63.

Section L: Odor Control

# RECOMMENDED STRATEGIES FOR ODOR CONTROL IN CONFINEMENT SWINE OPERATIONS

Hans Stein¹, Alvaro Garcia², Kent Tjardes¹, Charles Ullery³, Stephen Pohl³, and Christopher Schmit⁴

¹Animal and Range Sciences Department, ²Dairy Science Department, ³Agricultural and Biosystems Engineering Department, and ⁴ Civil and Environmental Engineering Department, South Dakota State University, Brookings S.D.

#### Summary:

Odors coming off a swine facility are generated from three different sources: the unit itself, from the storage facility, or the land on which the manure is applied.

To reduce the total amount of odor generated from a swine facility, odor generation and emission by each of these three sources needs to be reduced. Within each area, several options for odor reduction are available. Practices that have been proven to be effective and that can be immediately implemented are listed in Table 1. Other options are being developed or tested. Research into these practices will reveal whether or not they can be successfully implemented in the future.

Table 1 is organized in four sections covering practices that:

- 1. reduce odor generation in barns,
- 2. reduce odor emission from facilities and storage units,
- 3. increase odor dispersion, and
- 4. reduce odor emission from manure application.

For each practice, advantages and disadvantages are listed. The effectiveness and the cost of implementing each practice is indicated using odor generation from a standard swine facility as a base line. This unit is assumed to be constructed using state-of-the-art recommendations including deep pits or an uncovered manure storage facility, curtain sidings or mechanical ventilation, and no dietary modifications to reduce odor generation.

To obtain an overall reduction in odors from a facility, reductions need to be made in odor generated by the unit itself, the storage facility, and from land application.

Some practices listed in Table 1 are best management practices (BMP). These are practices with well-documented beneficial effects on sustainability of a production system. Their implementation should be encouraged even without considering their potential for odor reduction.

The cost of each practice is indicated. A "low" cost is assumed to be less than \$0.50 per GF pig produced (\$1.25/Animal Unit); "moderate" is assumed to add \$0.50-\$1.50 per GF pig produced (\$1.25-3.75/Animal Unit), and "high" is assumed to add more than \$1.50 per GF pig produced (\$3.75/Animal Unit) to total production costs, as compared to the base line unit.

Ag/Biosystems Engineering Department • Cooperative Extension Service • South Dakota State University

#### Conclusions and Recommendations

A number of practices are available to reduce odor from swine facilities. A reduction in odor coming off a swine facility is achieved only if the odors emitted by the unit itself, from the storage facility, and from the land application of the manure are reduced.

At this time, the following practices are recommended:

- 1. The odor from the unit itself can be reduced by a combination of dietary practices and the installation of a biofilter.
- 2. The odor from the storage facility can be reduced by installing an effective lagoon cover. In larger units this may be combined with a manure separator and (or) a methane digester.
- 3. The odor from the land application of manure can be reduced by injecting the manure into the soil.

Research into odor reduction is ongoing, and many new technologies are being developed. As independent research using these technologies becomes available, some of these technologies may prove to be even more effective than the ones listed in the table. SDSU swine research being conducted at the Southeast Research Farm near Beresford has demonstrated that biofilters reduce odor emissions from confined buildings by 96%.

Table 1: Odor Reduction Practices for Swine Operations

Practice	Description	Advantages	Disadvantages	Effectiveness	Cost	Comments
a. Low protein diets	Diets are lowered 3-4% in CP compared to NRC rec. Crystalline AA are added to diets so that AA levels follows NRC rec	Avoid overfeeding CP. Fewer problems with enteric diseases in pigs. Reduced N in manure, reduced ammonia emission	Reduced consumption of byproducts and alternative ingredients	Moderate .	Low. (Sometimes the cost of LP diets are actually lower than regular diets)	Cost offset by increased productivity and more efficient nutrient use. Should be considered a BMP
b. Low sulfur diets	Diets using no micro- minerals on sulfate form and no excess sulfur containing AA	Reduced production of $H_2S$	Some restrictions apply to the mineral sources that can be used	Moderate	Low	Should be considered a BMP
c. Phase feeding	Diets are changed frequently during the production phases to match the nutrient requirement of the pigs	Overfeeding and underfeeding with nutrients can be reduced	More diets are required on the farm	Low	Low	Should be considered a BMP
d. Precision diet formulation	Diets are formulated based on digestible contents of amino acids and minerals and the net energy content of the diets. Also, the ideal protein concept is used in diet formulation	Diets that more precisely match the requirement of the animals can be formulated. Reduction of excess nutrients in diets and thus in manure	Research is needed to establish digestible contents of nutrients in feed ingredients and the animals requirements for digestible nutrients	Low	Low	At least 3-5 years of research needed before concept can be implemented
e. Pelleting diets	All diets used in the operation are pelleted prior to use	Reduces dust generation and decreases amount of feed wasted in the manure pit	None	Low	Low (\$10/ton for mixing, this cost offset by increased nutrient digestibility)	

Table 1. Odor reduction practices for swine operations (cont.)

		Section 2: Decrease	Emission of Odor			
Practice	Description	Advantages	Disadvantages	Effectiveness	Cost	Comments
a. Flush systems for manure removal	Removes manure frequently by flushing all the pits	Effective in reducing emission from pit	Increased labor, need for outside storage	Moderate	Moderate	
b. Pit systems w/ reduced manure surface	Stoped bottom of pits make sure manure surface is reduced	Reduces emission from pits	None	Moderate	Moderate	Usually combined with increased flushing
c. Oil spraying	Vegetable oil sprayed in facilities at regular intervals	Bound dust also odors present in the dust	More slicky surface	Moderate	Moderate	Reduces health risk for human workers in barns
d. Biofilters	Air exhausted through a biofilter made from organic material that captures the odors. Clean, odorless air is released.	Very effective. Simple to construct. Environmentally friendly	Building design. Aesthetics	High	Low to moderate	Odor reduced by 96% in SDSU research. Cannot be used with curtain-sided barns
e. Storage additives	Additives added to manure storage facility	Supposed to reduce odor generation	Not a proven technique	Low	High	Questionable technique
f. Rigid manure storage covers	Mechanical cover is applied to the manure storage unit	Very effective	Can be costly	High	High	
g. Flexible manure storage cover	Flexible material applied on top of storage facility. May be textile or plastic membrane or floating clay balls		Can cause problems when agitating manure, support structure may be needed	High	Moderate	Several different materials can be used
h. Biodegradable manure storage cover	Straw is applied on top of storage facilities	Inexpensive	Needs to be filled every three months. More difficult to agitate storage unit	Moderate	Low	Effectiveness highly dependent on how the cover is managed
i. Manure separators	Separates manure into a solid and a liquid fraction	Decreases odor generation from storage	Relatively expensive, only applicable to large operations	Moderate	High	More effective separators are available in Europe
k. Methane digesters	Treat waste with 3 to 10% total solids. Biogas methane production from manure	Manure treatment can decrease odor at application time. Generation of electricity can help pay for treatment costs	Costs: \$250,000 O + M = \$7,500/year Cost effectiveness dependent on contract with electrical company.	High	High	May be combined with manure separators

Table 1. Odor reduction practices for swine operations (cont.)

Describe			ease Dispersion of O			
Practice	Description	Advantages	Disadvantages	Effectiveness	Cost	Comments
a. Shelterbelts	Create a vegetation barrier for dust and odorous compounds emitted from the building exhaust	Cost. Environment. Aesthetics	Requires planning and time	Low	Low	
b. Windbreak walls	Solid or porous wall constructed 10 to 15 feet from the exhaust fans will cause dust to settle	Rapid implementation	Cost. Aesthetics	Low	Low to moderate	
c. Setback distances	Optimize distance between odor emission sources and urban areas.	Cost.	Not applicable for facilities currently in operation	High	Variable	Effectiveness can be calculated through the OFFSET model (Univ. of Minn.)

Section 4: Land Application of Manure						
Practice	Description	Advantages	Disadvantages	Effectiveness	Cost	Comments
a. Manure injection or incorporation	Manure injected directly into soil. Can be done in pasture or bare soil or into a growing crop	No emission of odors from manure when applied to soil	Takes more horsepower and more sophisticated equipment	Very high	Low	Should be considered a BMP

## Section M: Waste Storage Pond Pumping Plan

But the state of t

#### SECTION M. MANAGEMENT OF WASTE STORAGE PONDS

Waste Storage ponds are an efficient and practical means to collect and store manure effluent from a confined livestock farm. A properly designed pond must store, at a minimum 180 days of manure effluent including a 25 year 24 hour storm event. Waste storage ponds should never be full and always have sufficient storage for the next precipitation event.

Effluent collected from the livestock farm contains various amounts of manure nutrients, bacteria, and other materials. Every livestock operation is unique when taking into account the amount and intensity of different rainfall events, and number and species of animals.

Livestock operators have difficulty in dealing with the collected wastewater when there are larger than normal amounts of runoff. Operators can find themselves faced with full waste storage ponds and often less than ideal conditions for land applying or otherwise utilizing the wastewater.

Producers who operate a facility with a waste storage pond must be ready to handle emergency situations when the pond may become full or near overflowing. Eliminating pond overflows is a critical factor in reducing pollutants from entering streams and other water bodies.

## Following are important recommendations to implement when operating a facility with a waste storage pond:

- Foremost, routinely monitor the level of the pond to assure there is enough storage remaining (plus freeboard) to hold the designed volume of a 25 year 24 hour storm event. This must Pumpdown level should be marked with a permanent depth gauge in the pond. If wastewater is above this line, the operator normally must pump the pond down below this level within 14 pump-able days.
- Plan ahead and develop a pumping plan. Identify specific fields and equipment needs for the pumping plan.
- Consider using cropping practices that will expand the "window of opportunity" for land application during the growing season. Decide on field access alternatives during wet weather conditions.
- Review and follow the Operation & Maintenance (O & M) guidelines provided with your manure management system design and constructions plans.
- Contact the Arkansas Department of Environmental Quality (501-682-7890) within 24 hours concerning a wastewater discharge.

#### Plan for Pumping Waste Storage Ponds

Operator Name <u>C&amp;H Hog Farms</u>				04/11/2018		
County	Newton	Pond ID or Legal I	Description Waste	Storage Pond 1 & 2		
• N	Method Selected for Lan	nd Application of Wa	stewater			
- - - -	X Pipeline/Sprinkle Big Gun Sprinkle Drag Hose Systen X Tank Wagon: Wa. Other (Explain)	n	Ü	d 2		
	Pre-Arranged Source of access to it).	Application Equipme	ent (List all necessa	ry equipment and		
<u>T</u>	ype Equip.	Ob	tain Where			
]	Pump	Proposed to Field 5-9				
_	Pipe		to Field 5-9			
	Sprinkler	Proposed to Field 5-9				
_	Vac Tanker		and 7-17			
	Fields Available for Lan- Legal Description Sec. 26, T15N, R20W	· <u>Landuse</u> <u>Grass</u>	Acres Available 74.3	<u>Predom. Soil</u> 48		
• h	Holding Capacity of Pon Bottom of 25-year, below level.	ids at Must Pumpdov , 24-hour storage level				
T	<b>Holding Capacity of Pon</b> <i>Top of 25-year, 24-hour st</i>	torage level (bottom oj	f freeboard)(Includes	s Concrete Pits).		
	Holding Capacity of Pon 07,705 gallons		-	lown Elevation		
• A	Application Rates	rd- Must Pumpdown E	ievaiion.			

Application Rates

The fertilizer value of wastewater in waste storage ponds is variable. Prior to land application, it is recommended to collect a representative sample from the pond and sent to a testing laboratory for analysis. If time does not permit waiting for test results, estimates of the nutrient content can be made from data previously collected at other facilities or from publications.

The land application rate should be calculated based on (1) the nutrient content of the wastewater, (2) current soil tests, (3) crop needs and (4) the water intake capacity (inches/hour) of the soil if an irrigation system is used.

For more information and/or assistance in calculating application rates, contact your local NRCS and Conservation District Office.

# Section N: Record Keeping and Land Application Log Forms

#### SECTION N. LAND APPLICATION LOG FORMS

The following log forms are enclosed:

- 1. Manure Source Details
- 2. Annual Report Form For Permitted Confined Animal Facilities
- 3. Previous Manure Applications and Nitrogen Credits
- 4. Calculating Residual/Supplemental Nitrogen Amounts
- 5. Fertilizer Recommendations and Crop Requirements
- 6. Determining the Manure Application Rate
- 7. Animal Waste Land Application Record For Permitted Confined Animal Facilities

# Recordkeeping

Keeping records plays a critical role in a manure management system. Records are essential to determine appropriate rates of manure to apply to the land while protecting surface and groundwater resources. It enables operators to make good annual and long-term decisions concerning efficient use of manure. Additionally, records serve to document compliance with regulations or voluntary adoption of best management practices.

Records should be maintained for five years or as otherwise instructed by specific federal and state laws, local county ordinances and/or program requirements.

At a minimum, track manure applications by collecting and keeping records of the following information:

- Soil test results and recommendations for all fields receiving manure (sampled and tested prior to hauling manure).
- Manure test results.
- Identity of the fields hauled to (including acres spread on and where in the field).
- Calculated "planned" manure application rate per field.
- Calculated "actual" manure application rate per field.
- Method of manure application.
- Date(s) and time(s) of manure application.

The following additional records are recommended if the goal is to implement a whole farm nutrient budget program:

- Soil test results and recommendations for the remaining fields receiving nutrients from other sources (i.e. commercial fertilizer).
- Form/rates of other nutrient sources applied per field.
- Crop planting and harvest dates and yields per field.

Soil testing on a whole farm basis provides fertility level information on all fields allowing operators to make decisions as to where manure nutrients can best be utilized.

The Manure Nitrogen and Phosphorus Application Worksheets provided with this plan serve as excellent recordkeeping tools to document test results and manure applications.

#### ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY

# ANNUAL REPORT FORM FOR PERMITTED CONFINED ANIMAL FACILITIES

	REPORTING PERIOD:			
PERMITTI	CE NAME:	PERMIT N	UMBER:	
PHONE NU	MBER:	AFIN NUM	BER:	
(ie., 20	TYPE AND SIZE:  00 Cow Dairy, 2,500 Swine Fi	nishing, 80,000 Bird Layer Operati	on, etc.)	
WASTE API	•	•	• 1	
WASTEWA'	AILABLE ACREAGE: TER SAMPLE LOCATI on During Pumping or Field D	ON:	_	
YOU MUST SU COOPERATIV	JBMIT A COPY OF THE WA E EXTENSION SERVICE OR AL NITROGEN, AMMONIA	ASTEWATER ANALYSIS FOR I A PRIVATE LAB. THE WASTEV A NITROGEN, TOTAL POTASS	VATER ANALYSIS MU	ST INCLUDE:
THE SOIL ANA	ALYSIS MUST INCLUDE: p	PY OF THE <b>SOIL ANALYSIS</b> FO H (su), POTASSIUM (lbs/ac), PHO SHOULD BE DONE FOR EACH	OSPHORUS (lbs/ac), AN	THIS FORM. ID NITRATES
SIGN AND DA YEAR.   PLEA	TE THIS REPORT AND SU	HE BACK FOR THE LAND APIUBMIT IT TO THE DEPARTME HIS REPORT, THE SOIL ANAIME FACILITY.	NT PRIOR TO MAY 3	0th OF EACH
SUBMITTED H OBTAINING TI	EREIN AND BASED ON MY INQ HE INFORMATION, I BELIEVE	HAVE EXAMINED AND AM FAMILI PUIRY OF THOSE INDIVIDUALS IMM THE SUBMITTED INFORMATION IS T PENALTIES FOR SUBMITTING FAI	EDIATELY RESPONSIBLE TRUE, ACCURATE AND C	E FOR
	PERATOR (Please Print)	SIGNATURE	DATE	

Mail complete annual report form and annual application report to:

Arkansas Department of Environmental Quality Permits Branch, Water Division 5301 Northshore Drive North Little Rock, AR 72118

### ANNUAL ANIMAL WASTE LAND APPLICATION REPORT

PERMITTEE NAME:		PERMIT NUMBER:								
Field Name or/and Number	Crop Type	Total* Area Applied (acres)	Total** Volume Applied (gallons)	Total*** Nitrogen (lbs/1000 gal.)	Calculated Nitrogen Applied (lbs/ac)					
(1)	(2)	(3)	(4)	(5)	(6)					
	·									
·										
	·									

Column (6) = Nitrogen Applied (lbs/ac) = Column(4) X Column(5) ÷ Column (3) ÷ 1,334

NOTE: You may make additional copies of this table as needed.

Mail complete annual report form and annual application report to: Arkansas Department of Environmental Quality Permits Branch, Water Division 5301 Northshore Drive North Little Rock, AR 72118

^{*} Total available area is the area where manure was applied during the reporting period (this data can be obtained from the management plan).

** Total volume applied is the total volume applied to the field during the whole reporting period (this data can be obtained from record sheet).

*** Total Nitrogen concentration (lbs/1000 gallons) can be obtained from the wastewater analysis sheet.

Date / /

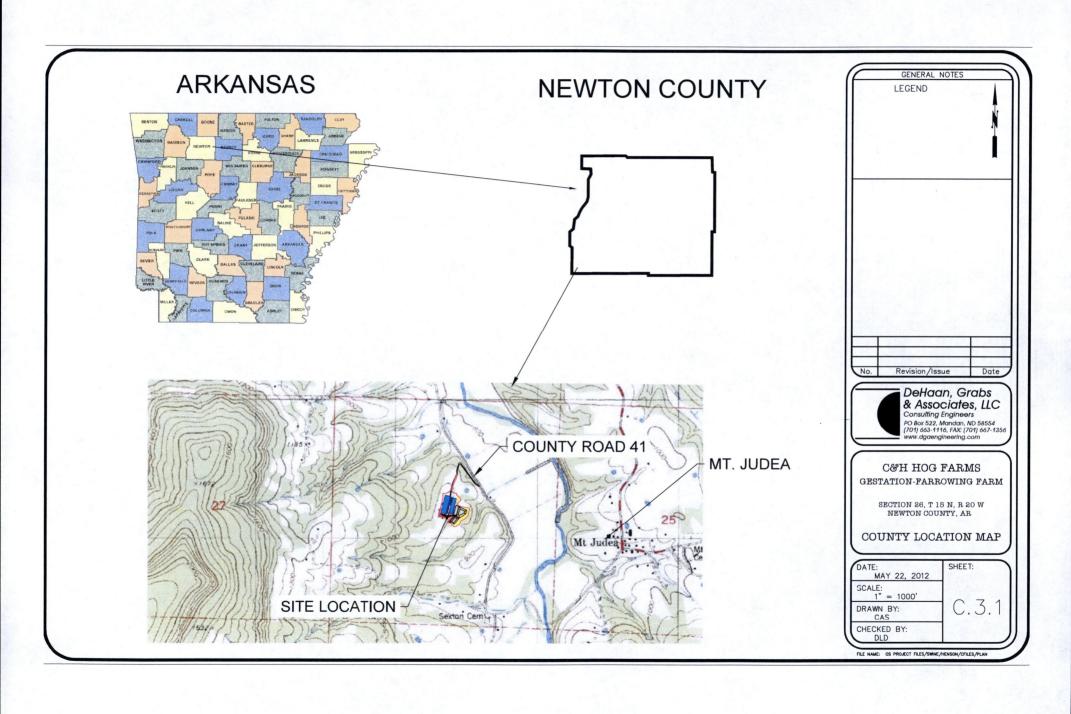
	Nitrogen o	redit from application	on before last se	ason's crop	Nitrogen credit from application before crop 2 seasons ago						
Field	Manure N Analysis Ib/ton or Ib/1000 gal	Application Rate ton/a or 1000 gal/a	% Available	N Credit	Manure N Analysis Ib/ton or	Application Rate ton/a or	% Available	N Credit	Previous Manui Credit (PMC)		
ricia	IM 1000 gai	1000 gaira	(Year 2)	lb/a	lb/1000 gal	1000 gal/a	(Year 3)	lb/a	lb/a		
			<u> </u>								
		]									
							····				
		}									
							· · · · · · · · · · · · · · · · · · ·	<del></del>	<del> </del>		
	-								,		
						1		j			
					-						
			······································				·				
			•			]					
				~~~~		ļ.					
						,					
A	, , , , , , , , , , , , , , , , , , ,							<u> </u>			
	i							at the state of th			
ALCULATION/	AE-1189	AE-1189			AE-1189	AE-1189			1		
REFERENCE:	SHEET 1, COL 1	SHEET 2, COL 4	TABLE 2	(1)x(2)x(3)/100	SHEET 1, COL 1	SHEET 2, COL 4	TABLE 2	(5)x(6)x(7)/100	(4)+(8)		
COLUMN:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		

	Actual	Acti	ual Manure Ana	lysis	Actual N	lutrient Applica	tion Rate	T	Difference		Vanna da Mai	4.61:4:-
Pia La	Application Rate ton/a or 1000 gal/a	N	P205 (ton, or lb/1000	K2O	N	P2O5	K2O	N	Difference P2O5	K20	P2O5	t Application K2O
Field	ton/a or 1000 gal/a	lb/	ton, or lb/1000	gal		lb/a			lb/a	1 1120	1203)/a
					1							
							1]			
					l							
					T	 		†	 	 		
										ļ		
					Ì		1				ļ	
						1				1		
			·		 	<u> </u>			<u> </u>			
e.	!].		
			'				İ	ļ				
						ļ				ļ		
								1				
						1.]		
								1				
	·		1					· · · · · · · · · · · · · · · · · · ·				
]		1							
					i							
					•				,			
	· .											
•												
		·····	†			 		 				
						ļ						
								ŀ	•			
· · · · · · · · · · · · · · · · · · ·								ļ				
								ļ				
	[
	ļ !											
											,	
					1		ļ	ĺ	÷		ļ	
•												
			1					1			1	
			1							***		
_					(1)X(2)X SHEET 3, COL 7/100	(1)X(3)X SHEET 3, COL 8/100	(1)X(4)X SHEET 3, COL 9/100			1		
CALCULATION/	AE-1189]		SHEET 3,	SHEET 3,	SHEET 3,	(5)-SHEET 3,	(6)-SHEET 3,	(7)-SHEET 3,	(6)/SHEET 3, COL 2	(7)/SHEET 3,
REFERENCE: COLUMN:		(2)	[]	(4)	COL 7/100	COL 8/100	COL 9/100	L COL 1	COL 2	COL 3	COL 2	COL 3
COLUMN:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)

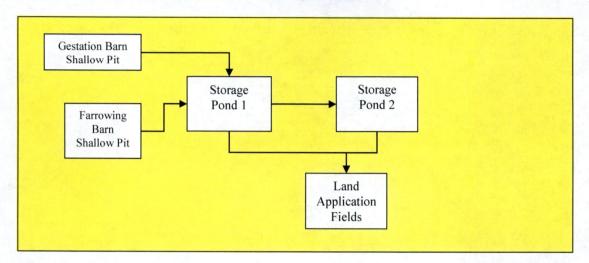
		Target Yield	Nitrogen Requirement	Soil Test Nitrogen	Sampling Date Adjustment	Previous Crop Credits	Previous Manure Credit		Nutrient Requireme	ents
Field Cr	Crop	bu/a, ton/a or lb/a	lb/a	(STN) lb/a	(SDA) lb/a	(PCC)	(PMC)	Net N	P2O5	K20
				7574	luia	lb/a	lb/a		lb/a	
						,				
		 					ļ <u>.</u>			
			ļ							
			ſ					·		
										+
										1
					}					
				·	 					
			1				 			
			1							
						·····	*****		 	
			i			1				
l			1							
			i							
		 			*****				1	
İ			1							
I			İ							
1									-	
1										
	····		***	*****					 	
										Ì
į.										
j			1			ľ				1
										l
1										1
1]					1
1										
										· .

ł					ĺ		į			1
			l							
-		•	1							
l							.]			
- 1							1		1	1
										1
ULATION/	<u> </u>	-						/3\-	SF 882 or	SF 882 o
ERENCE:			SF 882	SF 882	SF 882	SF 882	SHEET 1, COL 9	(3)- [(4)+(5)+6)+(7)]	TABLE 4	TABLE 4
DLUMN:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

	Nutrient Requirement Estimated Manure Analysis % Availability Nutrient Available 7								Tour to		- 1 1				
Field	N	P205	K20	N	P205	K20	N	P205	K20	N "	P2O5	K20	larget M	anure Appli	cation Ra
Fleid	 	lb/a		lb/t	on, or lb/10	00 gal		%			on, or lb/10	lsp 00	Tor	anure Appli P2O5 n/a, or lb/100	10 col
	1			1								T gai	100	/a, 01 10/10	ou gai
	1		}	1		1]			1		
				ı	-		1			1			1		
				1		1	1	1	1	1	Ī]	1		1
		 	 	 	 	-	-		ļ				ŀ		
	1	1		1						1				T	1
		İ			1			ļ	1	1					
]	1			1	ı	ľ		}			İ	Ī
		1	1			ļ						1		1	
					1	 	* 			 	ļ				
		l	1		1		1]	1	l	· .				
	1	ł	1	1	İ		1			I		İ			
	Ī		1	1	1		1					ľ			
	ļ <u>.</u>						Ī					1	1	İ	
									 	 	·	 	+	+	
-					1				1	1			1		1
			1			1							1		
	i		ŀ					1		ł	Ì	Ī	ŀ	1	
		 	ļ	ļ		<u> </u>					ì		1		
					1]					1	 	
		İ		1			1			ļ	1		1	1	1
	l			l		Ì	1	ĺ	Ì		l		1]	1
	İ	ŀ			ļ							1			Ì
·····		ļ	 									1	1	ĺ	
			l	1	}		1]							i
	ì				İ	l	l				1	1			
			ŀ				1		İ		1				
											ł			Ì	
				 		 			ļ		L				
	ļ	ŀ					1	1							
						j									
		<u>.</u>	1		1									1	
					ĺ			Į.	1	_			1		
						1	 		 	· · · · · · · · · · · · · · · · · · ·		 	 		
				r				ļ		Į	1		1		
				1				1				1	l		
			į	}		j	-	1			1	1	İ		
				l		1							l		
			}							<u> </u>		T			
	1				İ										
			1				l	1	1				1 .		
				1			ŀ		,				1		1
			ļ	<u> </u>				<u> </u>					<u> </u>		
						1	Į.								
			1												
i			1]		1			1		
				i			1	1	[i			1		!
				AE-1189	AE-1189	AE-1189	 		ļ				ļ		ļ <u>.</u>
ALCULATION/	SHEET 2.	SHEET 2.	SHEET 2,	SHEET 1,	SHEET 1,	SHEET 1,	TABLES	TAR! F 2	TABLE 3	(4)X(7)	(5)X(8)	(6)X(9)	(4)((40)	(2)((44)	(2)((4.5)
EFERENCE:	COL. 8	COL. 9	COL. 10	COL. 1	COL. 4	COL. 5	17222	I ALLES	, UDEE 3	/100	/100	/100	(1)/(10)	(2)/(11)	(3)/(12
COLUMN:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	1	1	ł	3


ANIMAL WASTE LAND APPLICATION RECORD FOR PERMITTED CONFINED ANIMAL FACILITIES

PERMITTEE:APPLICATION METHOD:		PERMIT NUMBER:							
Field Name or/and Number	Date Applied	Crop Type	Area Applied (acres)	Volume Applied (gallons)					
	- Vision Practice								
				·					


NOTE: Facility record; DO NOT MAIL THIS; Keep this record at the facility.

Make additional copies of this table as needed.

Appendix

MANURE HANDLING SYSTEM FLOW DIAGRAM

Whether you are in a high risk zone or not, you may need flood insurance because most homeowners insurance doesn't cover flood damage, if you live in an area with low or moderate flood risk, you are 5 times more likely to experience flood than a fire in your home over the next 30 years. For many, a National Flood insurance Program's flood insurance policy could cost less than \$400 per year. Call your insurance agent today and protect what you've built.

Learn more about steps you can take to reduce the risk flood damage.

Search Results—Products for **NEWTON COUNTY UNINCORPORATED AREAS**

Show ALL Products »

FEMA has not completed a study to determine flood hazard for the selected location; therefore, a flood map has not been published at this time. You can contact your community or the FEMA FMIX for more information about flood risk and flood insurance in your community.

You can choose a new flood map or move the location pin by selecting a different location on the locator map below or by entering a new location in the search field above. NOTE: Please be sure to enable populos for this site.

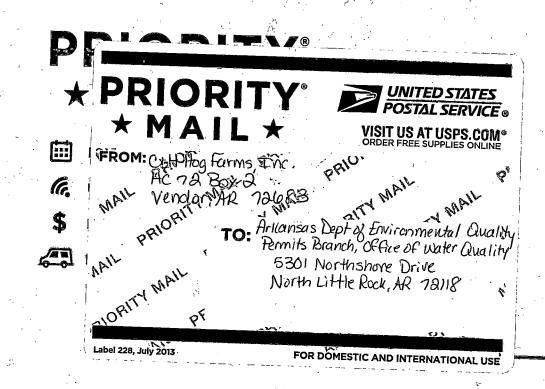
C&H Hog Farms Individual NPDES Permit Application Livestock Waste Control Facility

LAST PAGE

BBESS FIRMLY TO SEAL

PRIORITY°

OF THE RETURN ADDRESS, FOLD AT DOTTED LIN CERTIFIED MAIL®



7015 0640 0000 4258 3571

MESTIC AND INTERNATIONAL USE LACE MAILING LABEL HERE

WHEN USED INTERNATIONALLY, A CUSTOMS DECLARATION LABEL MAY BE REQUIRED.

Padded Flat Rate Envelope EP14PE July 2013 ID: 9.5 x 12.5

